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Recitation Plan: Solve the canonical OLG model (Q3 on Problem Set 3) and the Romer (1990)

“lab equipment” model with knowledge spillovers

1 OLG: Problem Set 3 Question 3

Consider the two-period canonical overlapping generations model with log preferences

log (c1 (t)) + β log (c2 (t + 1))

for each individual. Suppose that there is population growth at the rate n. Individuals work

only when they are young, and supply one unit of labor inelastically. The production technology

is given by

Y (t) = A(t)K (t)α L (t)1−α ,

where A(t + 1) = (1+ g)A(t), with A(0)> 0 and g > 0.

Part 1. Define a competitive equilibrium and the steady-state equilibrium.

Solution: A competitive equilibrium is an allocation [c1(t), c2(t), K(t)]t≥0 and prices [R(t), w(t)]t≥0

such that

(i) the consumption values c1(t) and c2(t +1) are determined by the solution to generation

t ’s optimization problem, taking w(t) and R(t + 1) as given:

max
c1(t),c2(t+1)

log (c1(t)) + β log (c2(t + 1)) s.t. c1(t) +
c2(t + 1)
R(t + 1)

≤ w(t),

and c2(0) = R(0)K(0);

(ii) prices R(t) and w(t) are given by the representative firm’s optimality conditions

R(t) = FK(K(t), L(t)) and w(t) = FL(K(t), L(t));
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(iii) capital accumulates according to K(t + 1) = S(t), where S(t) = L(t)(w(t)− c1(t)), with

K(0)> 0 given.

A steady-state equilibrium is a competitive equilibrium in which output Y (t), capital K(t), and

total consumption C(t) = c1(t)L(t) + c2(t)L(t − 1) all grow at constant rates.

Part 2. Can you apply the First Welfare Theorem to this competitive equilibrium?

Solution: Not necessarily – see the discussion below.

Part 3. Characterize the steady-state equilibrium and show that it is globally asymptotically

stable.

Solution: Begin by writing generation t ’s problem as an optimization problem over savings

s(t) = w(t)− c1(t):

max
s(t)∈[0,w(t)]

log (w(t)− s(t)) + β log (R(t + 1)s(t)) .

The solution implies that the household saves a constant fraction of its income (wealth), re-

gardless of the interest rate R(t + 1):

s(t) =
β

1+ β
w(t).

This owes to the assumption of log preferences, which are equivalently Cobb-Douglas prefer-

ences over consumption when young and when old (take the exponential of the household’s

objective function to see this). Aggregating over generation t households to arrive at aggregate

savings S(t), we can use the capital accumulation equation to find

K(t + 1) = S(t) =
β

1+ β
L(t)w(t).

Using the firm’s optimality condition, we can substitute for the wage:

K(t + 1) =
β

1+ β
(1−α)A(t)K(t)αL(t)1−α

Note that with Cobb-Douglas production, the wage bill L(t)w(t) is just a fraction 1 − α of

total output Y (t). The capital accumulation equation above is a non-autonomous first-order

difference equation in capital: Given K(t), it tells us how to calculate K(t + 1), but this cal-

culation is time-varying because both L(t) and A(t) are growing. As in the Solow and neo-
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classical growth models, to characterize the steady-state we can attempt to write the capital

accumulation equation as an autonomous first-order difference equation in a “detrended” or

“normalized” capital-like variable. Start by dividing both sides by L(t), using the assumption

that L(t + 1) = (1+ n)L(t):

K(t + 1)
L(t + 1)

=
1−α
1+ n

β

1+ β
A(t)
�

K(t)
L(t)

�α

.

This is a first-order difference equation in the capital-labor ratio K(t)/L(t), but it is again non-

autonomous when there is technological progress (g > 0). We can perform the same “trick”

again but with A(t) by writing A(t) = A(t)
1

1−α−
α

1−α and dividing each side by A(t)
1

1−α :

K(t + 1)

A(t + 1)
1

1−α L(t + 1)
=

1

(1+ g)
1

1−α

1−α
1+ n

β

1+ β

�

K(t)

A(t)
1

1−α L(t)

�α

.

Here we also used the assumption that A(t+1) = (1+ g)A(t). We then arrive at an autonomous

first-order difference equation in the capital-effective labor ratio k̃(t) = K(t)/A(t)
1

1−α L(t). Why

does the technology shock A(t) enter with the exponent 1
1−α? With Cobb-Douglas production,

a Hicks-neutral shock A(t) has precisely the same effect on the production technology as the

labor-augment shock A(t)
1

1−α . Uzawa’s Theorem tells us that in any balanced growth path the

capital stock must grow at the same rate as effective labor, which in this model is given by

A(t)
1

1−α L(t). So it makes sense to choose this as a normalizing variable for the capital stock

– and we know that it is the right choice because the capital accumulation equation becomes

autonomous (i.e., stationary) when we do this.

To characterize the steady-state, we write the difference equation in terms of k̃(t):

k̃(t + 1) =
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃(t)α.

Any steady-state k̃∗ must satisfy this equation with k̃(t + 1) = k̃(t) = k̃∗. The unique non-zero

steady state is then

k̃∗ =

�

1

(1+ g)
1

1−α

1−α
1+ n

β

1+ β

�
1

1−α

.

In this steady state, capital, output, and total consumption all grow at the same constant
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rate:

K(t) = k̃∗A(t)
1

1−α L(t)

= (1+ g)
1

1−α (1+ n)K(t − 1),

Y (t) =
�

k̃∗
�α

A(t)
1

1−α L(t)

= (1+ g)
1

1−α (1+ n)Y (t − 1),

C(t) = Y (t)− K(t + 1)

= Y (t)− (1+ g)
1

1−α (1+ n)K(t)

=
�

1− (1+ g)
1

1−α (1+ n)
�

k̃∗
�1−α�

Y (t).

In particular, all “per capita” variables (Y (t)/L(t), K(t)/L(t), . . . ) grow at the constant rate

(1+g)
1

1−α . The wage similarly grows at the rate (1+g)
1

1−α , and the interest rate is constant:

w(t) = (1−α)A(t)
�

K(t)
L(t)

�α

= (1−α)
�

k̃∗
�α

A(t)
1

1−α ,

R(t) = αA(t)
�

L(t)
K(t)

�1−α

= α
�

k̃∗
�−(1−α)

The steady state is globally stable provided that k̃(t) → k̃∗ given any starting value k̃(0). To

show this, we can prove the stronger result that k̃(t) converges monotonically to k̃∗: If k̃(0) <
k̃∗, k̃(t) increases at each t and converges to k̃∗, but if k̃(0)> k̃∗, k̃(t) decreases at each t and

converges to k̃∗. I prove this just when k̃(0) < k̃∗, because the argument is identical for the

case with high initial capital. Write the difference equation for k̃ as

k̃(t + 1) = G
�

k̃(t)
�

, where G
�

k̃
�

=
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃α.

The function G is strictly increasing, and k̃∗ is the unique non-zero solution to the equation

k̃ = G
�

k̃
�

. With k̃(t)< k̃∗, these facts immediately imply

k̃(t + 1) = G
�

k̃(t)
�

< G
�

k̃∗
�

= k̃∗.

Hence the capital-labor ratio is always bounded above by the steady-state value k̃∗. Moreover,

the capital-labor ratio k̃(t) is increasing over time:

k̃(t + 1)> k̃(t) ⇐⇒ G
�

k̃(t)
�

> k̃(t) ⇐⇒ k̃(t)< k̃∗.
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The final implication holds by direct calculation. Since k̃(t) is strictly increasing and bounded

above by the unique fixed point k̃∗ of G, we conclude that k̃(t) ↑ k̃∗. Repeating the same

argument for k̃(0)> k̃∗, we conclude that the steady-state equilibrium is globally stable.

Part 4. What is the effect of an increase in g on the equilibrium path?

Solution: An increase in g raises output per capita, the capital-labor ratio, consumption per

capital, the wage, and the interest rate at each time t – not just in the steady state. To see this,

recall from above the capital-labor ratio statisfies the non-autonomous first-order difference

equation

K(t + 1)
L(t + 1)

=
1−α
1+ n

β

1+ β
A(t)
�

K(t)
L(t)

�α

.

An increase in g raises A(t) at each time t > 0. Since K(0)/L(0) is fixed and the right side of

this equation is increasing in K(t)/L(t) and A(t), we immediately observe that an increase in

g raises K(t)/L(t) at each time t > 0. This immediately implies the corresponding result for

output per capita when we note

Y (t)
L(t)

= A(t)
�

K(t)
L(t)

�α

.

The wage and interest rate satisfy

w(t) = (1−α)A(t)
�

K(t)
L(t)

�α

,

R(t) = α

�

A(t)
1

1−α L(t)
K(t)

�1−α

.

The same argument as above implies that w(t) is increasing in g at each time t > 0. To

determine the comparative static for the interest rate R(t), recall that the capital-effective labor

ratio satisfies the autonomous first-order difference equation

k̃(t + 1) =
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃(t)α.

The right side of this equation is decreasing in g and increasing in k̃(t), and the initial value

k̃(0) is fixed. These facts immediately imply that k̃(t) is decreasing in g at each time t > 0.

But since the interest rate is given by R(t) = αk̃(t)−(1−α), we observe that the interest rate at

each time t > 0 is increasing in g. Finally, note that since both the wage w(t) and the interest
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rate R(t + 1) are increasing in g, consumption for generation t while young c1(t) and while

old c2(t + 1) must both be increasing in g.

Part 5. In the rest of the question, assume that g = 0. Suppose that the equilibrium involves

r∗ < n. Explain why the equilibrium is referred to as “dynamically inefficient” in this case.

Show that an unfunded Social Security system can increase the welfare of all future genera-

tions.

Solution: When r∗ = R∗ − 1 < n, the equilibrium is “dynamically inefficient” because the

steady-state or limiting capital stock exceeds the golden rule capital stock that maximizes

steady-state consumption. Intuitively, the equilibrium overaccumulates capital when r∗ < n,

and reducing the capital stock (equivalently, the quantity of savings) at each date would allow

for an increase in consumption at each date. This implies that the equilibrium is not Pareto

optimal, and we will provide a constructive proof to show that there are alternative allocations

that strictly increase the welfare of all generations.

We proceed by introducing an unfunded Social Security system to the economy, which consists

of a tax d on each generation while young and a corresponding transfer (1+ n) d to each

generation while old. Since the population of each generation grows at rate n, this amounts to

a mandatory transfer from young to old at each time t. I will show that for d sufficiently small,

the equilibrium with the Social Security system Pareto dominates the equilibrium without the

Social Security system.

The optimization problem for generation t now becomes

max
s(t)∈[0,w(t)−d]

log (w(t)− d − s(t)) + β log (R(t + 1)s(t) + (1+ n)d) .

The interior first-order condition must be satisfied for d sufficiently small:

1
w(t)− d − s(t)

=
βR(t + 1)

R(t + 1)s(t) + (1+ n)d
.

Savings by generation t are then

s(t) =
β

1+ β
w(t)−

1
1+ β

�

β +
1+ n

R(t + 1)

�

d.

Note that with fixed prices w(t) and R(t + 1), savings are always smaller when d > 0 as each

household attempts to compensate for the lower consumption at t and the higher consumption

at t + 1 effected by the Social Security system. (But we have to see if this remains true in
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general equilibrium after prices adjust.) Aggregating across generation t households and using

the representative firm’s optimality conditions to substitute for the prices w(t) and R(t + 1),
we find that capital satisfies the non-autonomous first-order difference equation

K(t + 1) =
β

1+ β
(1−α)K(t)αL(t)1−α −

1
1+ β

�

β +
1+ n
α

�

K(t + 1)
L(t + 1)

�1−α�

d L(t)

Letting k(t) = K(t)/L(t) denote the capital-labor ratio, we can divide through by L(t) and

rearrange to find the autonomous first-order difference equation

(1+ n) (1+ β) k(t + 1) +
�

β +
1+ n
α

k(t + 1)1−α
�

d = β (1−α) k(t)α

The second term on the left side is the new term that arises with d > 0. Just as in the standard

OLG model, this difference equation fully characterizes the equilibrium with the Social Security

system: All quantities and prices at each time can be written as a function of the capital-labor

ratio k(t) and the (exogenous) number of workers L(t). However, when d > 0 we cannot

generally solve for k(t + 1) as a function of k(t) in closed form. But since the left side of this

equation is strictly increasing in k(t + 1), tends to zero as k(t + 1)→ 0, and tends to infinity

as k(t +1)→∞, there is still a unique solution k(t +1). To perform comparative statics with

respect to d, we write k(t, d) to emphasize the dependence of the sequence of capital-labor

ratios on d, and we write the difference equation in more compact form as

H (k(t + 1, d), d) = β (1−α) k(t, d)α.

We can implicitly differentiate with respect to d to find

kd(t + 1, d) =
β (1−α)αk(t, d)α−1kd(t, d)−Hd(k(t + 1, d), d)

Hk(k(t + 1, d), d)
.

I claim that this equation implies ∂ k(t + 1, d)/∂ d < 0. Since Hd > 0 and Hk > 0, this holds

provided that kd(t, d)< 0. But at t = 0, since k(0, d) = k(0) is exogenously fixed, this equation

reduces to

kd(1, d) = −
Hd(k(1, d), d)
Hk(k(1, d), d)

< 0.

By induction, we can conclude that kd(t + 1, d)< 0 for t ≥ 0.

Thus far, we have established that expanding the Social Security system (i.e., raising d) lowers

the capital-labor ratio at each time in the (unique) competitive equilibrium. How does this
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fact help us show that we can achieve a Pareto improvement by introducing the Social Security

system? The idea is that a small increase from d = 0 to d > 0 reduces the capital-labor ratio

at each time, and since the economy overaccumulates capital in the d = 0 equilibrium, this

adjustment could (and in fact will!) raise consumption at each time by reducing the overac-

cumulation. For our purposes, it will suffice to show that each generation’s budget constraint

slackens when we raise d marginally from d = 0 to d > 0. For arbitrary d > 0, generation t ’s

budget constraint is

c1(t)≤ w(t, d) +
�

1+ n
R(t + 1, d)

− 1
�

d −
c2(t + 1)

R(t + 1, d)
.

It suffices to show that, when c1(t) and c2(t + 1) take their steady-state equilibrium values

with d = 0, the right side of this inequality is increasing in d near d = 0. Recall that these

steady-state equilibrium values are given by

c∗1 = w∗ − s∗ = w∗ − (1+ n) k∗,

c∗2 = R∗ (1+ n) k∗.

The right-hand side (RHS) of the inequality above can then be written

RHS(t, d) = w(t, d) +
�

1+ n
R(t + 1, d)

− 1
�

d −
R∗ (1+ n) k∗

R(t + 1, d)

Differentiating with respect to d and evaluating at d = 0, we have

RHSd(t, 0) = wd(t, 0) +
1+ n

R∗
− 1+

(1+ n) k∗

R∗
Rd(t + 1,0),

where we used the identity R(t+1,0) = R∗. To calculate the derivatives wd(t, 0) and Rd(t+1, 0),
we make use of the equilibrium price conditions

w(t, d) = (1−α) k(t, d)α,

R(t + 1, d) = αk(t + 1, d)−(1−α).

Differentiating yields

wd(t, d) = α (1−α) k(t, d)−(1−α)kd(t, d),

Rd(t + 1, d) = −α (1−α) k(t + 1, d)−(2−α)kd(t + 1, d).
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We can then write

RHSd (t, 0) =
1+ n

R∗
− 1+α (1−α) (k∗)−(1−α)

�

kd(t, 0)−
1+ n

R∗
kd(t + 1, 0)
�

.

Our final observation is that the evolution equation for kd(t + 1,0) implies that kd(t + 1,0) <
kd(t, 0) for t ≥ 0. Intuitively, starting from the d = 0 steady-state capital-labor ratio k∗, in-

troducing the unfunded Social Security system d > 0 requires a reduction in the capital-labor

ratio at each time to reach the new and lower steady-state capital-labor ratio k∗(d). The capital-

labor ratio declines monotonically to k∗(d), so in response to the introduction of d > 0, the

capital-labor ratio at t + 1 must fall more than at t relative to the initial steady-state k∗. This

observation implies

RHSd (t, 0)>
1+ n

R∗
− 1+α (1−α) (k∗)−(1−α)

�

kd(t + 1, 0)−
1+ n

R∗
kd(t + 1, 0)
�

=
�

1−α (1−α) (k∗)−(1−α) kd(t + 1, 0)
�

�

1+ n
R∗
− 1
�

The first factor is positive since kd(t + 1, 0) < 0, and the second factor is positive since the

initial steady-state equilibrium is dynamically inefficient (1+ n > R∗). Hence RHSd(t, 0) > 0,

and since preferences are locally non-satiated, introducing a (small) unfunded Social Security

system must strictly raise welfare for each generation in equilibrium.1

Part 6. Show that if r∗ > n, then any unfunded Social Security system that increases the

welfare of the current old generation must reduce the welfare of some future generation.

Solution: In this case, we can directly apply the First Welfare Theorem with a countably infinite

number of households (see problem set solutions for details).

1Technically I’ve shown this only for generations t ≥ 0, but it is immediate that generation t = −1 (i.e., the
initial elderly who own the initial capital stock) strictly benefits from the new transfer of (1+ n)d per capita.
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2 Romer (1990)

2.1 Setup

This model exists in continuous time t ∈ [0,∞) and consists of a representative household

with labor endowment L(t) = Lexp (nt), discount rate ρ > 0, and consumption utility u(c) =
c1−θ/ (1− θ ). A unique final good (and numeraire) is produced at each time t using the Cobb-

Douglas production technology

Y (t) =
1

1− β

�

∫ N(t)

0

x(ν, t)1−βdν

�

LE(t)
β ,

where LE(t) denotes the quantity of labor employed in final good production, x(ν, t) denotes

the quantity of intermediate good ν used in final good production, and N(t) denotes the num-

ber of intermediate varieties discovered up to time t. Each intermediate is produced using the

final good at marginal cost ψ> 0, and intermediates are assumed to depreciate completely at

each time.

Labor can also be used to conduct research and development (R&D) for the discovery of new

intermediate varieties. Given a quantity of labor input LR(t), the number of varieties increases

according to the evolution equation

Ṅ (t) = N(t)φηLR(t).

Here φ ≤ 1 controls the strength of knowledge spillovers across time: With φ > 0, greater

existing knowledge makes current researchers more productive in the discovery of new vari-

eties, and this effect is stronger when φ is larger. I restrict φ ≤ 1 so that we do not obtain

“explosive” growth even when LR(t) is constant over time. For reasons that will become clear

below, I refer to the case with φ = 1 as exhibiting dynamic constant returns to R&D, while the

case with φ < 1 exhibits dynamic decreasing returns to R&D.

Labor is allocated between final good production and R&D according to profit-maximizing

behavior by two different kinds of firms. A representative final good producer chooses the

quantities of all inputs (x(ν, t) for ν ∈ [0, N(t)] and LE(t)) to maximize final output, taking the

price of each intermediate p(ν, t) and the wage w(t) as given. A large mass of firms also employ

labor to discover new intermediate varieties. Each of these “potential monopolists” can employ

one unit of labor to discover a new variety at rate N(t)φη.2 Aggregating across all potential

2I write this as if each potential monopolist can only employ one unit of labor for R&D, but since the “production
technology for knowledge” Ṅ = NφηLR exhibits constant returns to scale in LR, it’s all the same if each potential
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monopolists that employ labor, the total flow rate of new ideas is then Ṅ(t) = N(t)φηLR(t).
Potential monopolists find it optimal to employ labor for R&D provided that the value V (t) of

discovering a new variety at t dominates the cost of discovery. Equivalently, this holds when

the value of employing an additional unit of labor at wage w(t) is weakly smaller than the

value generated by that labor, which equals the flow rate of discovery N(t)φη times the value

V (t). In equilibrium, potential monopolists continue to enter until the wage w(t) is driven up

to this flow value N(t)φηV (t), so that we satisfy

N(t)φηV (t)≤ w(t) and LR(t)≥ 0,

with complementary slackness.

To complete the description of the model, we must determine the value V (t). I assume that

each monopolist that successfully invents a new intermediate variety ν receives a perpetual

patent on that variety. As a result, it can set its price p(ν, t) at each time t to maximize profits,

taking all remaining equilibrium objects except for the quantity x(ν, t) as given. Letting π(t)
denote the profits at each time t, and noting that π does not depend on ν because all existing

intermediates ν ∈ [0, N(t)] enter final production symmetrically and have the same marginal

cost ψ, the value V (t) must satisfy

V (t) =

∫ ∞

t

exp

�

−
∫ s

t

r(u)du

�

π(s)ds.

Here r(t) denotes the equilibrium interest rate at time t. The value of ownership of an inter-

mediate is then the present discounted value of all future profit flows, discounted to present

using the “market” discount rate r(t). Differentiating with respect to t implies that this value

also satisfies the Hamilton-Jacobi-Bellman (HJB) equation

r(t)V (t) = π(t) + V̇ (t).

This equation expresses the “arbitrage condition” that the instantaneous return to owning an

intermediate r(t)V (t) must equal the flow dividend π(t) plus any “capital gains” V̇ (t).

Finally, note that in this version of the Romer (1990) model, the household can “save” only

in a fairly implicit way. Just as in the neoclassical growth model, we allow the household

access to an asset A(t) that pays an instantaneous return r(t) at each time t and, from the

household’s perspective, allows it to transfer consumption across time. The household’s opti-

monopolist can employ any quantity of labor it wishes.
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mal consumption stream can again be summarized by the Euler equation and the transversality

condition

ċ(t)
c(t)

=
1
θ
(r(t)−ρ) ,

0= lim
t→∞

exp

�

−
∫ t

0

r(s)ds

�

A(t).

But how does “saving” actually happen, and what is the asset A(t) since this model does not

have physical capital? In equilibrium, the household’s assets at each time t must be equal to the

value of all intermediate monopolists: A(t) = N(t)V (t). Intuitively, when the household wants

to transfer consumption into the future, the economy responds by reducing the quantity of labor

LE(t) employed in final good production and raising the quantity of labor LR(t) employed in

R&D. This raises the rate at which new intermediates are discovered and hence the “supply” of

assets N(t)V (t). As we will see below, this works to raise consumption in the future by making

labor more productive in producing the final good, which increases consumption (holding the

labor input fixed).

The way this works in equilibrium is as follows: Fix a path for per capita consumption [c(t)]t≥0,

and note that the interest rate r(t) is pinned down at each time by the household’s Euler equa-

tion. Suppose we temporarily increase the household’s desire for saving at time t (say, by

reducing ρ temporarily). This leads the household to demand more assets A(t), which places

downward pressure on the interest rate r(t). But this raises the discounted present value

V (t) of future profits earned by an intermediate monopolist, stimulating additional entry and

increasing the rate of production of new assets Ṅ(t).3 This can only happen if labor is reallo-

cated away from final good production and toward R&D, which reduces present consumption

in favor of future consumption.

2.2 Static Equilibrium Conditions

Before studying the dynamic equilibrium in this model, we can make some progress by studying

the static equilibrium conditions of the final good producer and the monopolists of existing

intermediates ν ∈ [0, N(t)]. Given the wage w(t) and the intermediate prices [p(ν, t)]N(t)
ν=0 ,

the final good producer chooses LE(t) and [x(ν, t)]N(t)
ν=0 to maximize profits. The first-order

3This explanation assumes that initially Ṅ(t) > 0. If we are instead in an equilibrium with no R&D, then the
interest rate is the only part of the equilibrium that adjusts to the increased propensity to save, ensuring that the
household finds it optimal to consume according to the original consumption path at each time. This adjustment
is just as in the Lucas asset pricing model, and I’m happy to explain further if helpful.
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optimality conditions are

w(t) = β
Y (t)
LE(t)

,

p(ν, t) = LE(t)
β x (ν, t)−β .

We will eventually use the first condition to determine the wage w(t). The second condition

defines the (inverse) demand curve observed by each intermediate monopolist ν. Given this

demand curve, the monopolist chooses the price p(ν, t) to maxmize its own profits at t:

max
p
(p−ψ) LE(t)p

−1/β .

The solution to this problem is

p (ν, t) =
1

1− β
ψ,

with corresponding quantity and profits

x(ν, t) = x̄ LE(t), where x̄ =
�

ψ

1− β

�− 1
β

π (t) = π̄LE(t), where π̄= β
�

ψ

1− β

�− 1−β
β

.

Total output then satisfies

Y (t) =
x̄1−β

1− β
N(t)LE(t),

so that the wage becomes

w(t) = β
Y (t)
LE(t)

= β
x̄1−β

1− β
N(t).

Finally, total consumption is

C(t) = Y (t)−ψ
∫ N(t)

0

x(ν, t)dν

= Y (t)−ψ x̄N(t)LE(t)

=
�

1− (1− β)1+β
�

Y (t).
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Note that the crucial feature of this model is that final output Y (t) is proportional to N(t)
and LE(t): N(t) acts like labor-augmenting technological progress, so provided that LE(t)
eventually settles to a constant value, we expect to achieve constant growth in output per

capita if N(t) increases at a constant rate.

2.3 Dynamic Constant Returns: φ = 1, n= 0

To characterize the equilibrium withφ = 1 and n= 0, I begin as usual by studying the balanced

growth path. Suppose an equilibrium in which output and consumption grow at the constant

rate g ≥ 0. The household’s Euler equation then implies that the interest rate is constant and

satisfies the standard “Ramsey formula”

r∗ = ρ + θ g.

There are two cases to consider: Either Ṅ(t) = 0 always, or Ṅ(t)> 0 at some time t. I consider

these cases in turn.

Case 1: Ṅ(t) ≡ 0. In this case, we must have LE(t) = L at each time t, so that the economy

permanently stagnates with output Y (t) = x̄1−β

1−β N(0)L, wage w(t) = β x̄1−β

1−β N(0), and interest

rate r∗ = ρ. To ensure that this is a valid equilibrium, we must only check that potential

monopolists find it weakly optimal not to conduct R&D. The value V (t) of an intermediate is

V (t) = π̄L/ρ, so that free entry with LR(t) = 0 requires

N(0)ηV (t)≤ w(0) ⇐⇒ ρ ≥ η (1− β) L.

Under this parameter restriction, the economy has a balanced growth path with Ṅ(t)≡ 0.

Case 2: Ṅ(t) > 0 at some t. In this case, we must have LR(t) > 0, so that the free-entry

condition implies

N(t)ηV (t) = w(t)⇒ ηV (t) = β
x̄1−β

1− β
.

The implication follows from the characterization of the wage w(t) above. Hence V (t) = V ∗

is constant,4 and the HJB equation for V (t) implies

V ∗ =
π̄LE(t)

r∗
.

4Here I’m really assuming that Ṅ(t)> 0 on an interval or that Ṅ(t) is continuous, both of which are innocuous
along a balanced growth path.
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But then LE(t)must be constant, LE(t)≡ L∗E. This constant quantity of labor employed in final

good production and the growth rate g must satisfy the system of equations

L∗E = r∗
V ∗

π̄
=
ρ + θ g
η (1− β)

,

g =
Ṅ(t)
N(t)

= η
�

L − L∗E
�

.

The solution is

L∗E =
1
η

θηL +ρ
1− β + θ

,

g =
η (1− β) L −ρ

1− β + θ
.

To ensure that we have characterized a valid equilibrium, we must check that (i) the free-

entry condition is satisfied with g > 0 and (ii) r∗ > g, so that the equilibrium features finite

expected discounted output. The first condition holds provided that ρ < η(1− β)L, and the

second condition holds provided that

ρ > (1− θ ) g ⇐⇒ ρ >
η (1− θ ) (1− β) L

2− β

The analysis above provides a full characterization of the unique balanced growth path in this

economy. What about transitional dynamics? We shouldn’t expect any in this model, because

the economy does not have any “concave” features (like diminishing marginal returns to an

accumulating factor) that would yield sluggish adjustment to the balanced growth path. To

see this, suppose the balanced growth path features positive growth,and note that the free-

entry condition and Euler equations imply the following characterizations of the interest rate

r(t):

r(t) = ρ + θ

�

Ṅ(t)
N(t)

+
L̇E(t)
LE(t)

�

= ρ + θ

�

η (L − LE(t)) +
L̇E(t)
LE(t)

�

,

r(t) = η(1− β)LE(t).
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These equations imply

LE(t)− L∗E =
1
η

θ

1− β + θ
L̇E(t)
LE(t)

When LE(t) is above its BGP value L∗E, this equation implies that the growth rate of LE(t) is

positive. If ever LE(t) > L∗E, the unique solution to this differential equation would feature

LE(t) → ∞, violating the labor market clearing condition LE(t) + LR(t) ≤ L. Similarly, if

ever LE(t) < L∗E, the solution would feature LE(t)→ 0, implying no consumption as t →∞
and violating the household’s transversality condition. We conclude that any equilibrium must

feature LE(t) = L∗E at all times t, so that we immediately follow the balanced growth path.

2.4 Dynamic Decreasing Returns: φ < 1, n> 0

Weakening knowledge spillovers by reducingφ below 1 has (surprisingly!) strong implications

for growth in this model. For example, if the number of workers allocated to R&D is held fixed,

it is easy to see that the growth rate of labor productivity will tend to zero over time:

Ṅ(t)
N(t)

= ηN(t)φ−1 LR→ 0,

where the limit holds since φ < 1.5 Conversely, when φ = 1, the growth rate of labor pro-

ductivity diverges if the number of workers allocated to R&D increases at a constant rate (e.g.,

because of population growth):

Ṅ(t)
N(t)

= ηLR(t)→∞.

This is the essence of the scale effect in the model with φ = 1: The growth rate on the balanced

growth path is increasing in the quantity of labor L. As Jones (1995) discusses, this scale effect

is counterfactual across many countries and time periods, and that paper proposes a variation

of the Romer (1990) model with φ < 1 but n> 0 to remove it.

In a balanced growth path with a constant share of workers s allocated to R&D, it is straight-

forward to determine the growth rate g of labor productivity (or output per worker). Since

5This is why I think of this case as encapsulating “dynamic decreasing returns”: The marginal improvement in
R&D productivity from additional knowledge accumulation decays over time.
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output per worker is proportional to N(t), g must satisfy

g =
Ṅ(t)
N(t)

= ηN(t)φ−1sL(t).

Log differentiating both sides implies

0=
L̇(t)
L(t)
− (1−φ)

Ṅ(t)
N(t)

= n− (1−φ) g ⇐⇒ g =
n

1−φ
.

Hence the long-run growth rate of output per worker is entirely determined by the growth rate

of the population and the extent of dynamic decreasing returns to knowledge accumulation φ.

Using similar arguments to those as in the φ = 1 case, it is straightforward to characterize the

remaining equilibrium objects along the balanced growth path when φ < 1.
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