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These notes describe and solve a version of the Klette and Kortum (2004) model of innovation

and firm dynamics.

1 Setup

The economy exists in continuous time and consists of a mass of research firms, a firm that

produces final output, a measure L > 0 of workers, and a measure S > 0 of scientists. Each

research firm produces intermediates and conducts research to improve their quality, and final

output is produced by aggregating intermediates. Workers inelastically supply one unit of

labor to research firms for the production of intermediates, and scientists inelastically supply

one unit of research effort to research firms for the production of new innovations.

Final Production. At each time t ∈ [0,∞), final output is produced using the Cobb-Douglas

production technology

Y (t) = exp

�

∫ 1

0

log (x (ν, t)) dν

�

. (1.1)

Here ν ∈ [0,1] indexes the intermediates used in final production and x (ν, t) denotes the

quantity of intermediate ν used at time t. The corresponding price index (and the competitive

price of final output) is

P (t) = exp

�

∫ 1

0

log (p (ν, t)) dν

�

, (1.2)

where p (ν, t) is the price of intermediate ν at time t. The price of final output is normalized

to one, P (t)≡ 1, and the final output firm maximizes profits over input quantities:

max
x(ν,t)≥0

exp

�

∫ 1

0

log (x (ν, t)) d t

�

−
∫ 1

0

p (ν, t) x (ν, t) dν. (1.3)
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The solution yields the conditional intermediate demand functions

x (ν, t) =
Y (t)

p (ν, t)
. (1.4)

Intermediate Production. Intermediate ν is produced by a research firm using only labor at

marginal cost wL (t)/q (ν, t), where wL (t) is the wage for labor and q (ν, t) denotes the quality

of the intermediate. The quality of the intermediate increases over time through innovation,

and we assume that each innovation on intermediate ν raises its quality by a factor λ > 1: If

intermediate ν has quality q (ν, t) and a firm innovates at t, then the subsequent quality of this

intermediate is

q (ν, t+) = λq (ν, t) . (1.5)

A firm that innovates on intermediate ν receives a perpetual patent for the intermediate of

the new quality q (ν, t+). Until a subsequent innovation, the firm engages in Bertrand-Nash

competition with the intermediate of quality λ−1q (ν, t+). Given that intermediate demand is

unit elastic, at each time t intermediate prices satisfy the limit pricing condition

p (ν, t) =
wL (t)

λ−1q (ν, t)
. (1.6)

The flow profits earned by the frontier variety of intermediate ν are then

π (ν, t) =
�

p (ν, t)−
wL (t)
q (ν, t)

�

x (ν, t) = π̄Y (t) , (1.7)

where π̄= λ−1
λ .

Using the limit pricing condition (1.6), the price index for final output satisfies

1= P (t) =
λwL (t)

Q (t)
, (1.8)

where we define the aggregate quality of intermediates Q (t) by

Q (t) = exp

�

∫ 1

0

log (q (ν, t)) dν

�

. (1.9)

In particular, we note that the wage for labor can be written as a function of aggregate quality
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at each time t:

wL (Q (t)) =
Q (t)
λ

. (1.10)

Total labor used in the production of intermediates must also satisfy the market-clearing con-

dition

L =

∫ 1

0

x (ν, t)
q (ν, t)

dν=
Y (t)
λwL (t)

. (1.11)

Final output at each time t can also be written as a function of aggregate quality:

Y (Q (t)) =Q (t) L. (1.12)

The flow profits that accrue to the frontier variety of any intermediate are then

π (Q (t)) = π̄Q (t) L. (1.13)

Innovation. Innovation can be undertaken by incumbent and entrant firms through research.

Considering first innovation by incumbents, we suppose that these firms can employ scientists

to raise the rate at which they improve the quality of a random intermediate. Let I ≥ 0 denote a

firm’s innovation rate, let S ≥ 0 denote the firm’s employment of research effort, and let n ∈ N
denote the number of frontier intermediates produced by the firm. If n ≥ 1, the innovation

rate satisfies

I = G (S, n) , (1.14)

where the innovation production function G is strictly increasing in both arguments, strictly

concave and smooth in S, and homogeneous of degree one. The corresponding “scientist re-

quirement function” is

S = Σ (I , n) = nσ
�

I
n

�

, where σ (γ) = Σ (γ, 1) . (1.15)

We also assume that σ (0) = 0.

Consider an incumbent that produces n≥ 1 intermediates. Given a path of interest rates r (t),
the incumbent chooses its innovation rate I (n, t) at each time t to maximize the expected
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present value of the firm V (n, t), which satisfies the HJB equation

r (t)V (n, t)− V̇ (n, t) =max
I≥0

nπ̄Q (t) L −Σ (I , n)wS (t) + I [V (n+ 1, t)− V (n, t)] (1.16)

+ nµ (t) [V (n− 1, t)− V (n, t)] .
(1.17)

Here wS (t) denotes the wage rate for scientists at time t, and µ (t) ≥ 0 denotes the rate

at which a random intermediate observes an innovation in equilibrium. Any incumbent that

produces n= 0 intermediates permanently exits, so that V (0, t)≡ 0. We restrict to equilibria in

which the value function V (n, t), the aggregate innovation rateµ (t), and the wage for research

effort depend on time t only through aggregate quality Q (t). In this case, we conjecture and

verify that the value function takes the form

V (n,Q) =QLvn, (1.18)

where v > 0 is a fixed constant. The boundary condition V (0, t) = 0 is clearly satisfied, and

for n≥ 1 the HJB equation (1.16) becomes

r (t)Qv − Q̇v =max
γ≥0

π̄Q−σ (γ)
wS (Q)

L
+ (γ−µ (Q))Qv. (1.19)

The optimality condition for γ is

QLv = σ′ (γ (Q))wS (Q) . (1.20)

Now consider potential entrants. We assume that by employing SE ≥ 0 scientists, each entrant

can attain innovation rate η= ᾱSE. Free entry implies the optimality conditions

η (Q)≥ 0 and QLv −
wS (Q)
ᾱ

≤ 0, (1.21)

with complementary slackness.

Consumption. The economy’s representative consumer consumes final output, collects all

earnings from labor and research effort, owns all research firms, and can purchase and sell a

risk-free bond in zero net supply. Letting C (t) denote final consumption at time t, standard
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arguments imply the Euler equation and transversality condition

Ċ (t)
C (t)

= r (t)−ρ, (1.22)

0= lim
t→∞

exp

�

−
∫ t

0

r (s) ds

�

Q (t) , (1.23)

where ρ > 0 is the consumer’s discount rate and we assume that the consumer’s constant

elasticity of intertemporal substitution is equal to one. Market clearing requires C (t) = Y (t) =
Q (t) L, so the Euler equation implies that the interest rate must satisfy

r (t) = ρ +
Q̇ (t)
Q (t)

. (1.24)

The HJB equation (1.19) can then be written

ρv =max
γ≥0

π̄−σ (γ)
wS (Q)

QL
+ (γ−µ (Q)) v. (1.25)

Factor Market Clearing. To describe the market-clearing equations for scientists, note that

γ (Q) and η (Q) equal the aggregate innovation rates by incumbents and entrants, respectively.

Market clearing for scientists requires

S = σ (γ (Q)) +
η (Q)
ᾱ

. (1.26)

2 Equilibrium Characterization

To characterize the equilibria in this economy, first note that the incumbent and entry optimality

conditions as well as the market-clearing constraint for scientists jointly imply that the wage

for research effort must be linear in QL; we write w̄SQL for the scientists’ wage. As a result, γ

and η must be constant in equilibrium, and the equilibrium conditions can be written

HJB : v =
π̄−σ (γ) w̄S

ρ +η
, (2.1)

Incumbent Optimality v = σ′ (γ) w̄S, (2.2)

Entrant Optimality
v

w̄S
−

1
ᾱ
≤ 0 and η

�

v
w̄S
−

1
ᾱ

�

= 0, (2.3)

Market Clearing S = σ (γ) +
η

ᾱ
. (2.4)
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These equations imply a simple characterization of the unique equilibrium:

Proposition 1. The equilibrium is unique and satisfies the following:

(i) If σ′
�

σ−1 (S)
�

≤ 1
ᾱ , then

σ (γ) = S, η= 0, w̄S =
π̄

ρσ′ (γ) +σ (γ)
, v =

π̄

ρ + σ(γ)
σ′(γ)

. (2.5)

(ii) If σ′
�

σ−1 (S)
�

> 1
ᾱ , then

σ′ (γ) =
1
ᾱ

, η= ᾱ (S −σ (γ)) , w̄S =
π̄

(ρ +η)σ′ (γ) +σ (γ)
, v =

π̄

ρ +η+ σ(γ)
σ′(γ)

.

(2.6)

Proof. Consider a candidate equilibrium with positive entry, η > 0. Then the entrant optimal-

ity condition (2.3) yields w̄S = ᾱv, and the incumbent optimality condition determines the

incumbent innovation rate:

σ′ (γ) =
1
ᾱ

. (2.7)

The market-clearing condition (2.4) requires γ= σ−1
�

S − η

ᾱ

�

< σ−1 (S), and since σ is strictly

convex, the above equation can only hold when σ′
�

σ−1 (S)
�

> 1
ᾱ . In this case, the market-

clearing condition (2.4) yields η = ᾱ (S −σ (γ)), and the HJB and incumbent optimality con-

ditions (2.1, 2.2) can be used to solve for w̄S and v.

If σ′
�

σ−1 (S)
�

≤ 1
ᾱ , then the argument above implies η = 0 and σ (γ) = S. Equations (2.1,

2.2) again determine w̄S and v.

The relative efficiency of the incumbent and entrant “innovation production functions” deter-

mines whether positive entry obtains in equilibrium. If ᾱ is too low, entrants are insufficiently

innovative, and all innovation is conducted by incumbents. The equilibrium growth rate is also

simple to calculate in this economy:

Proposition 2. If there is no entry in equilibrium, aggregate quality and output grow at rate

γ log (λ) , where σ (γ) = S. (2.8)
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With positive entry, aggregate quality and output grow at rate

[γ+ ᾱ (S −σ (γ))] log (λ) , where σ′ (γ) =
1
ᾱ

. (2.9)

The growth rate is increasing in the efficiency of entrant innovation ᾱ.

Proof. To prove the comparative statics result, note that with positive entry

dγ
dᾱ
= −

1
ᾱ2σ′′ (γ)

, (2.10)

dᾱ (S −σ (γ))
dᾱ

=
σ′ (γ)
ᾱσ′′ (γ)

+ S −σ (γ) . (2.11)

Hence

d [γ+ ᾱ (S −σ (γ))]
dᾱ

= S −σ (γ) +
σ′ (γ)− 1/ᾱ
ᾱσ′′ (γ)

= S −σ (γ) . (2.12)

For intuition about the comparative statics result, note that an increase in ᾱ has two effects on

incumbent and entrant innovation: It raises the efficiency of scientists currently employed by

entrants and reallocates scientists away from incumbents and toward entrants in equilibrium.

The reallocation effect has no first-order impact on aggregate growth, because free entry re-

quires that the marginal scientist employed by an incumbent firm must be exactly as productive

as the marginal scientist employed by an entrant. As a result, the economy can only grow faster

as entrants innovate more rapidly after an improvement in their innovation efficiency ᾱ.
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