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Abstract

Innovations often combine several components to achieve outcomes greater than the
“sum of the parts.” We argue that such combination innovations can introduce an under-
studied inefficiency—a positive market expansion externality that benefits the owners of
the components. We demonstrate the importance of this externality in the market for phar-
maceutical cancer treatments, where drug combination therapies have proven highly ef-
fective. Using data on clinical trial investments, we document several facts consistent with
inefficiently low private innovation: firms are less likely than publicly funded researchers
to trial combinations, firms are less likely to trial combinations including other firms’ drugs
than those including their own drugs, and firms often wait to trial combinations including
other firms’ drugs until those drugs experience generic entry. Using microdata on drug
prices and utilization, we quantify the externalities that arise from new combinations and
find that the market expansion externality often dominates the standard negative business
stealing externality, suggesting too little innovation in combination therapies. As a result,
firms may have incentives to free ride off others’ innovation, which we analyze with a dy-
namic structural model of innovation decisions. We use the model to design cost-effective
policies that advance combination innovation. Redirecting publicly funded innovation to-
ward combinations with high predicted market expansion or consumer surplus spillovers
minimizes crowd out of private investments, increasing the rate of combination innovation
and total welfare while remaining budget neutral.
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1 Introduction

Many of the technologies that shape our world are inherently combinatorial, employing

multiple innovative components together to achieve outcomes superior to what each compo-

nent could accomplish individually. For example, smartphones enable wireless communication

and information processing by integrating a radio transceiver, a microprocessor, and a lithium-

ion battery, technologies that were individually recognized with Nobel prizes: Marconi and

Braun (1909), Alferov et al. (2000), and Goodenough et al. (2019), respectively. Electric ve-

hicles similarly combine many innovations used in gas-powered vehicles, such as suspension

systems, aerodynamic designs, and safety features, with more recent breakthroughs in bat-

tery technology and electric motors. And leading treatments for medical conditions ranging

from ADHD to HIV/AIDS to COVID-19 consist of multiple drugs that are more effective when

used together.1 While combination innovations like these are thought to play a critical role

in long-run technological progress (Schumpeter, 1934; Romer, 1992; Weitzman, 1998), firms’

incentives to invent new combinations remain less well examined.

In this paper, we study incentives to innovate combinations. Innovation, in general, re-

sults in numerous externalities that can distort the efficiency of equilibrium investment (Ar-

row, 1962). Innovating firms may steal business from existing substitutes, generate positive

spillovers for consumers through better products or lower prices, or benefit other firms through

information spillovers that improve their innovation productivities.2 We argue that combina-

tion innovation introduces a new externality on other firms, a market expansion effect that arises

when it increases profits for underlying component products not owned by the innovator.3 This

positive externality reduces the private value of innovation below its social value, potentially

leading to underinvestment in combinations. Moreover, component owners may have an in-

centive to free ride off others’ combination innovation, leading to delayed innovation.

To what extent does the market expansion externality drive a wedge between equilibrium

and socially optimal innovation of new combinations, and how should policy respond? We

develop an empirical framework to answer this question in a healthcare context: the market

for cancer drug combination therapies, where combination innovation occurs through running

clinical trials for new combinations of cancer drugs.

1Adderall, approved in 1996, treats ADHD using amphetamine and dextroamphetamine, discovered in the
1920s and 1930s. Pfizer’s COVID-19 drug, Paxlovid, combines nirmatrelvir and ritonavir.

2Early literature on innovation focused on a single innovation at a time, while the more recent “Schumpete-
rian” literature (Aghion and Howitt, 1992) emphasizes dynamic models of repeated innovation. Quality ladder
models feature business stealing, where each innovation replaces demand for previous generations and enables
the development of the next.

3Similar effects can arise when an innovation increases profits for complementary products.
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Cancer combination therapies offer a policy-relevant setting in which to study combina-

tion innovation. Cancer is the second leading cause of death in the United States (CDC, 2024),

and innovations in chemotherapy have been important contributors to reductions in cancer

mortality (Cutler, 2008; Lichtenberg, 2010; Siegel et al., 2023), with combination therapies

emerging as some of the most potent weapons in the war on cancer (Mokhtari et al., 2017).4

Innovating a new combination therapy by demonstrating safety and efficacy in clinical trials

is costly, and pharmaceutical companies face substantial legal, logistical, and strategic barriers

that prevent them from internalizing externalities through Coasian bargaining (Humphrey et

al., 2011; Institute of Medicine et al., 2012; Deng, 2015; Boshuizen and Peeper, 2020; Podkon-

jak et al., 2021; Sanofi, 2022).5 Government intervention is common in this market through

publicly-funded combination trials (Holbeck et al., 2017; Meric-Bernstam et al., 2023), open-

ing questions about designing cost-effective policies to support combination innovation that

balance private and public funding (Schilsky, 2013).

We use data from publicly recorded investments in clinical trials to observe combination

innovation decisions for both successful and failed innovations, and data on drug demand

and prices to estimate the value of successful combinations to innovators and the spillovers

on patients and firms. An advantage in studying drug combination innovation is that we can

readily identify the risk set of potential innovations (i.e. all possible combinations of existing

drugs), something that is typically more challenging to do in empirical studies of innovation.6

This greatly enhances our ability to characterize the direction of innovation and the nature of

“missing innovations.”

We formalize externalities arising from combination innovation using a stylized model

of cancer drug combination innovation. Firms own one or more individual drugs and can

run a clinical trial to, if successful, introduce a treatment regimen that combines multiple

drugs. The introduction of a new combination regimen may impose pecuniary externalities on

consumers and other firms, leading an innovator investing in combination innovation to not

fully internalize the change in industry profits and consumer surplus.

An important case of such externalities is when there are missing property rights from com-

bination innovation. This issue is especially stark in our setting of cancer treatment. Unlike

4Recently, the promise of more effective treatments and the sense that new combination therapies have been
slow to arrive have prompted extensive discussion in the medical research community about the causes of delay
(Boshuizen and Peeper, 2020).

5For example, uncertainty over the success and potential qualities of combination therapies may contribute to
imperfect or private information across different parties. Dynamically, drug owners may have an incentive to free
ride off of the combination innovation of others. We discuss these forces in detail in Section 2.1 and Appendix G.

6A recent exception is Kim (2023), which studies innovation in structural biology and uses a database of all
known proteins to study the direction of innovation.

3



many oral medications (e.g., Adderall and Paxlovid7), cancer combination therapies are typi-

cally not packaged together since component drugs may be taken over the course of many days

or weeks in a clinical outpatient setting and in dosages that depend on patient characteristics.

Because of this, an innovating firm cannot prevent patients (or doctors) from adopting the new

regimen using its underlying drugs. Thus, the innovator of a combination can profit from the

innovation only by selling more of the component drugs it owns at their non-discriminatory

prices.8 Similar missing property rights arise in other settings, such as the innovation of soft-

ware and hardware.9

In our setting, the externalities that result from introducing a new drug combination in-

clude a market expansion externality distinctive to combination innovation, as well as two

externalities that are common to many kinds of innovation, consumer surplus spillovers and

business stealing from existing regimens. This market expansion externality arises whenever a

firm introduces a regimen that uses drugs patented by another firm, raising demand for those

complementary drugs and hence their owners’ profits. Consumer surplus spillovers are also

exacerbated by missing property rights, because a firm cannot price discriminate based on the

value of a drug used in a particular regimen. These new features tend to reduce the private

value of innovation below its social value.

We use our stylized model to formulate three predictions about private and public innova-

tion decisions that we test using comprehensive data on clinical trials for cancer drugs between

1990 and 2022. First, all else equal (particularly, regimen prices and qualities), market expan-

sion externalities imply that a firm’s research portfolio will consist of a smaller share of combi-

nation trials than will a social planner’s. The data support this prediction: while 58% of cancer

drug clinical trials are for combinations rather than single-drug therapies, this percentage is

significantly lower for trials sponsored solely by firms (49%) compared to trials sponsored by

publicly-funded (i.e., likely more social-welfare minded than firms) innovators (63%).

Second, the missing property right problem implies that firms will trial combinations of

their own drugs more often than combinations involving drugs they do not own, therefore

directing innovation towards own-drug combinations. Focusing on two-drug combinations,

7These drugs are examples of Fixed Dose Combinations, combinations of two or more drugs in a single dosage
form. We discuss the differences from our setting in more detail in Section 2.1.

8The fact that the combination cannot be sold as a physically combined drug also precludes selling at a bundled
discount since the component drugs could be resold.

9New computer software or smartphone applications increase the demand for manufacturers of the associated
hardware (e.g., processors, memory, screens, . . . ). However, developers may struggle to appropriate all of the
surplus because of the competition that they face in their product markets. Conversely, improvements in hardware
quality increases the demand for software but the associated positive externality on developers may not be fully
internalized.
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firm trials are biased towards combinations consisting of their own on-patent drugs—11 times

more likely than if combinations were drawn uniformly at random from the set of possible

combinations—instead of combinations with other firms’ on-patent drugs or generic drugs.

One might propose an alternative explanation for this result, arguing that firms prefer trialing

their own drugs due to greater familiarity or technological compatibility. We present two pieces

of evidence against these alternative explanations. First, we show that the probability of a firm

trialing its own on-patent drug and a generic drug is largely unaffected by whether the generic

drug was initially patent by the firm. Second, we examine data from laboratory tests (Holbeck

et al., 2017) of pre-clinical measures of efficacy from all possible two-drug combinations from a

set of marketed cancer drugs. These “bench test” measures show that combinations that consist

of drugs owned by the same firm or two different firms have similar measures of efficacy across

a wide range of cancer cells. Together, these results suggest that financial incentives created

by property rights for drugs drive trialing decisions.

Third, the missing property right problem implies that the owner of a drug will run fewer

combination trials including that drug after it faces generic competition, while other innovators

will run more. Price declines after generic entry may increase demand and thus the value

of the combination to other innovators. To examine this prediction, we compare innovation

before and after generic entry. We find that a drug is used in more combination trials on

average after generic entry (11.0% increase), with the original owner running fewer (-59.4%

decrease) and publicly-funded innovators and other firms running more (7.9% and 41.7%

increase, respectively). The increase in total trialing is driven by an increase in the probability

of a newly generic drug being trialed with an on-patent drug.

Motivated by these empirical results, which are consistent with inefficient underinvestment

in combination therapies because of the market expansion externality and missing property

right problem, we develop an empirical framework to quantify the externalities from combi-

nation innovation and design innovation funding policies to correct these externalities. This

framework consists of two steps. First, we model cancer drug demand and price setting, which

allows us to estimate the welfare change from combination innovation and decompose this

change into externalities on patients and firms. Second, we develop a dynamic combination

innovation model that captures the incentive to free ride off others’ combination innovation

and the possibility of public crowd-out. We use this model to recover primitives of the combi-

nation innovation decision and evaluate counterfactual innovation funding policies.

In this first step, we estimate a model of patient demand for cancer drugs and drug price

setting. Each patient makes a joint decision with her doctor over what treatment regimen to

take, either a single drug or combination therapy. The demand model captures complementari-
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ties between drugs by modeling demand over bundles (regimens) of drugs following Gentzkow

(2007), using insights from the medical literature to define the set of recommended regimens

(Chu and DeVita, 2019). Substitution patterns depend flexibly on patient demographics and

type of insurance (public or private), which is important for accurately measuring the value

of new combinations. We estimate the model using claims data for Medicare and privately

insured patients, from the Marketscan database, between 1998 and 2019. These microdata

allow us to develop a novel method to measure market shares and prices of combination regi-

mens, which cannot be recovered from aggregate drug sales alone. We model price setting as

simultaneous Nash bargaining between drug owners and private insurers, which captures the

role of insurers as intermediaries in determining drug prices for their relatively price inelastic

beneficiaries. We recover marginal costs of drug production and parameters of the bargaining

problem. These estimates are important inputs into firm profit functions, including predicting

how prices respond to innovation.

We use these models to quantify the externalities from combination therapies that have

been successfully trialed and introduced to the US market between 1999 and 2019. This anal-

ysis is selected on combination therapies that, despite the market expansion externality, were

likely privately profitable to develop. We find that new combination therapies with at least two

branded drugs owned by different firms have large positive spillovers on other firms that own

component drugs in the regimen but did not sponsor the trial, so that the sum of business steal-

ing and market expansion is large and positive on average: one year after introduction it aver-

ages approximately $27 million, and extrapolated over the average patent length of the com-

ponent drugs implies positive profit externalities upwards of $200 million over the life-cycle

of each new combination therapy. New combination therapies also have positive spillovers on

patients ($31 million per year per new combination therapy on average), but there are also

large negative externalities from combination innovation on insurers that increase their costs

($24 million per year per new combination therapy on average). These results suggest that

firms are often under-incentivized to conduct trials for combination therapies because of large,

positive spillovers to other firms and patients.

Finally, in the second step of the empirical framework, we study how these externalities

affect the path of combination innovation by developing and estimating a dynamic model of

combination therapy innovation decisions. For each combination regimen that is trialed in

the data, we model the timing of when that regimen is trialed, and which innovator trials

the regimen, as a dynamic discrete-choice game. The game is finite horizon, capturing the

fundamental non-stationarity of the setting that occurs through new drug introduction and

intellectual property protections. The agents in the game are innovators that have interests
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in trialing the regimen (i.e., firms that have at least one on-patent drug in the regimen and a

publicly-funded innovator). Each innovator maximizes the discounted sum of variable surplus

from successfully trialed regimens net of trialing costs. Market expansion externalities create

an incentive for firms to free ride off others’ combination innovation. And innovation by the

public innovators similarly may crowd out private combination innovation.

We estimate the model using a full-solution likelihood-based approach, recovering the

fixed cost of innovation and parameters of the public innovator’s objective function. To make

this estimation procedure computationally tractable, and facilitate the computation of coun-

terfactuals, we reduce the size of the state space using a method similar to partially oblivious

equilibrium (Weintraub et al., 2008, Benkard et al., 2015) and moment-based Markov equi-

librium (Ifrach and Weintraub, 2016) that creates separability across the games for different

regimens. We also apply sieve value function approximation (Arcidiacono et al., 2013), which

allows us to approximate each game’s solution.

We then use the estimated model to design cost-effective policy solutions to support com-

bination innovation. We focus on combination regimens that were trialed in the data and

three types of policies that could affect the speed with which these new regimens were trialed.

Specifically, we study the effects of (i) research subsidies, (ii) varying the amount of public

innovation, and (iii) varying the direction of public innovation. These three policies are mo-

tivated by existing interventions in this market which take the form of research grants and

publicly-funded trials, and our counterfactuals are informative about the design of these inter-

ventions. They are also simple to implement compared to the relatively information intensive

Pigouvian subsidy.

Increasing public innovation is a cost-effective policy for increasing the rate of combina-

tion innovation, even though the model predicts private firms will to some extent free ride

off public innovation. Focusing on colorectal cancer, increasing the public trialing budget by

approximately $416 million can increase consumer surplus and profits by as much as $840 mil-

lion, with a total welfare increase of $616 per patient-year. Despite being an untargeted policy,

research subsidies can also be a cost-effective way to advance combination innovation as they

increase private trialing probabilities while reducing public-crowd out, increasing consumer

surplus and profits by $750 million at a cost of $307 million, with a total welfare increase of

$642 per patient-year. Finally, redirecting public innovation towards combinations that firms

are particularly under-incentivized to trial, that is, combinations with many generic drugs or

combinations with high market expansion potential, minimizes public crowd out of private

investments and can increase the rate of combination innovation and total welfare while re-

maining budget neutral. These policies increase total welfare for colorectal cancer regimens by
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as much as $367 million ($533 per patient-year), giving similar gains to uniformly increasing

public innovation or research subsidies but at much lower implementation cost.

Related Literature: Our work contributes first to a vast empirical literature on the effi-

ciency of private innovation decisions (including Griliches, 1979, 1991; Jaffe, 1986; Klette,

1996; C. Jones and Williams, 1998, 2000; Hall et al., 2010; Bloom et al., 2013; Lucking et al.,

2019; Zacchia, 2020; B. Jones and Summers, 2021). Papers in this literature use a variety of

methods to measure innovation externalities, and typically estimate that social returns to R&D

are higher than private returns. Our study of combination innovation externalities highlights

a new force leading to underinvestment. Recent work including Bloom et al. (2013) focuses in

particular on quantifying the knowledge spillovers and business stealing externalities empha-

sized in the Schumpeterian growth literature (Aghion and Howitt, 1992). We emphasize the

distinctive pecuniary externalities that arise under combination innovation, including market

expansion and severe consumer surplus spillovers from missing property rights, and we de-

velop a structural model to estimate them in the cancer drug market. To our knowledge, this

paper is the first to provide an empirical analysis of combination innovation in a market setting,

complementing a primarily theoretical literature on its role in economic growth (Schumpeter,

1934; Weitzman, 1998; Arthur, 2009; Clancy, 2018; C. Jones, 2023). Relative to these papers,

our paper also highlights how market expansion externalities can arise in models with imper-

fect competition. Since combination innovations necessarily build on existing technologies,

our work is also related to the literature on follow-on innovation (e.g., Kitch, 1977; Green

and Scotchmer, 1995; Heller and Eisenberg, 1998; Lerner and Tirole, 2004; Scotchmer, 2004;

Williams, 2013; Sampat and Williams, 2019), which typically has not focused on quantifying

the externalities that result from follow-on innovation.10 Our discussion of the missing property

rights problem for combination therapies is particularly related to the missing property rights

problem for “new uses” for generic drugs discussed in Roin (2013) and Conti et al. (2020),

but we emphasize that it also shapes incentives to innovate combination therapies when the

underlying drugs are still on-patent.

We also contribute to a literature on the economics of the pharmaceutical industry, includ-

ing work on pharmaceutical demand and pricing (papers with closely related models include

Dubois and Lasio, 2018; Dubois et al., 2022; Maini and Pammolli, 2020; Cuddy, 2021; Dafny

et al., 2023; see Scott Morton and Kyle, 2011 for a broader review) and innovation (Budish

et al., 2015; Dubois et al., 2015; Gilchrist, 2016; Rao, 2020; Krieger et al., 2022; Agha et al.,

2022; Aryal et al., 2022; Frankel et al., 2023). Most related are several papers that study de-

mand for combination therapies and the pricing of the underlying drugs: Song et al. (2017)

10A follow-on innovator may have positive externalities on a previous innovator who has IP protection.
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estimates a model of demand and pricing for combination therapies for colon cancer, and uses

it to explore the potential price-reducing effects of mergers between firms with complementary

drugs. Cao and Chatterjee (2023) similarly studies the pricing of fixed-dose combinations, in

which the constituent drugs are bundled in a single dosage form. We instead focus on combi-

nation therapies that use separately marketed drugs, which are much more common in cancer

treatment and limit firms’ ability to price discriminate. We focus on the incentives to innovate

combination therapies rather than pricing, and we develop a structural model of combination

innovation. Our characterization of the pecuniary externalities from combination innovation

is similar to that of Brekke et al. (2023), that develops a model of duopoly pricing in the pres-

ence of a combinatorial good. We use our empirical model to quantify these externalities and

explore the implications for innovation, and we stress the role of intellectual property protec-

tions for individual drugs in shaping innovation incentives. Finally, Wang (2022, 2023) studies

the effects of the Medicines Patent Pool on drug diffusion and innovation, focusing on generic

firms’ production of HIV drug cocktails. Such patent pools have not been widely used for can-

cer drugs, and we focus on quantifying the incentives to innovate these cocktails that contain

combinations of patented and generic drugs and the resulting externalities.

Finally, our combination innovation model draws on existing work in the structural model-

ing of dynamic games, especially related to entry and innovation decisions (e.g., Pakes, 1986;

Bajari et al., 2007; Pakes et al., 2007; Goettler and Gordon, 2011; Sweeting, 2013; Igami,

2017; Igami and Uetake, 2019; Bodéré, 2023; Hodgson, 2024). We develop a computation-

ally tractable model of combinatorial product innovation by applying approximation methods

(Arcidiacono et al., 2013) and reducing the dimension of the state space with a method sim-

ilar to oblivious equilibrium (Weintraub et al., 2008, Benkard et al., 2015) or moment-based

Markov equilibrium (Ifrach and Weintraub, 2016).

Outline: The remainder of the paper is organized as follows. Section 2 describes the em-

pirical setting and data. Section 3 presents a stylized model of combination innovation and

facts consistent with predictions of this stylized model using data on investments in clinical

trials, suggestive of inefficiencies in the innovation of cancer combination therapies. Section

4 develops our model of cancer drug demand and price setting, and Section 5 uses this model

to quantify the externalities from combination therapy introduction. Section 6 develops a

dynamic model of combination innovation to examine how externalities shape combination

innovation decisions, and Section 7 designs cost-effective policies to support combination in-

novation. Section 8 concludes.
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Table 1: Example Cancer Drug Combination Regimens

Cancer Drugs Firm Dosage Cycle Trial Sponsor (Paper) Trial Year

Colorectal 5-Fluorouracil (Generic) 3,000 mg/m2 IV day 1, 2 2 weeks Public 1999
Leucovorin (Generic) 200 mg/m2 IV day 1 (de Gramont et al., 2000)
Oxaliplatin Sanofi 100 mg/m2 IV day 1

CLL Chlorambucil (Generic) .5 mg/kg PO on day 1, 15 4 weeks Roche 2013
Obinutuzumab Roche 100 mg IV day 1; (Goede et al., 2014)

900 mg IV day 2;
1000 mg IV day 8, 15

Breast Gemcitabine Eli Lilly 1,200 mg/m2 IV day 1, 8 3 weeks Eli Lilly 2002
Trastuzumab Genentech 2 mg/kg IV day 1 (O’Shaughnessy et al., 2004)

Non-Small Carboplatin Bristol-Myers Squibb AUC of 6, IV day 1 3 weeks Public 2001
Cell Lung Paclitaxel Bristol-Myers Squibb 200 mg/m2 IV day 1 (Sandler et al., 2006)

Bevacizumab Genentech 15 mg/kg IV day 1

Notes: Table shows four example cancer combination regimens from Chu and DeVita (2019), for colorectal,
chronic lymphocytic leukemia (CLL), breast, and non-small cell lung cancer, respectively. For each regimen, the
second column gives the component drugs, the third column gives the drug owner (original patent holder) at
the year of trial submission, the fourth column gives the dosage of each drug, the fifth column gives the cycle
length, the sixth shows who ran the pivotal clinical trial, and the final column is the submission year of that trial
to ClinicalTrials.gov. IV means intravenous, and these drugs are administered into a vein using a needle or tube.
PO means taken orally. AUC stands for area under the curve, and measures the exposure of a drug.

2 Cancer Combination Therapies: Setting and Data

2.1 Setting

Combination therapies, treatment regimens consisting of two or more drugs, are widely

used in the treatment of most cancers.11 Biological justifications for using combination thera-

pies include reduced drug resistance,12 reduced toxicity or side effects, and chemical synergies

(Chu and DeVita, 2019). Most combination therapies consist of injectable (IV) drugs delivered

in an outpatient clinical setting, while some regimens also contain prescription drugs taken

orally. Example combination regimens are shown in Table 1, which displays the component

drugs, dosage information, and firms with patented drugs in the regimen at the time of the

first trial. These example regimens highlight that combinations are often taken over the course

of many days or weeks, and the exact dosage can depend on patient characteristics (e.g., size

of the tumor). Combinations contain a mix of on-patent drugs, potentially owned by different

firms, and generic drugs.

11One of the first, and most influential, cancer combination therapies was discovered in the 1960s by Emil
Frei (Frei et al., 1965) and was used to treat pediatric patients with acute lymphoblastic leukemia, resulting
in dramatic reductions in mortality. It is known as the “VAMP” regimen and consists of 4 drugs: vincristine,
amethopterin (methotrexate), 6-mercaptopurine, and prednisone.

12Approximately 90% of cancer-related deaths are associated with drug resistance (Bukowski et al., 2020;
Dhanyamraju, 2024).
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Combination therapies are evaluated in clinical trials to prove safety and efficacy.13 Every

recommended regimen in authoritative treatment guidelines such as Chu and DeVita (2023),

UpToDate (Connor, 2024), and National Comprehensive Cancer Network (2024) cites a scien-

tific paper reporting results from pivotal clinical trials demonstrating the regimen’s safety and

efficacy. While off-label use in untested combinations is theoretically feasible, it is uncommon:

in addition to concerns about safety, efficacy, and liability, there are potential issues with in-

surance coverage (NCI, 2014).14 Combination therapies often undergo combined Phase I-II or

II-III trials rather than separate Phase I, II, and III trials.15 In our sample of combination clinical

trials (defined below), we estimate a success rate of 1.5% across cancers, with a range from

.1% to 5% by individual cancer.16 These clinical trials can be extremely costly, with average

per-patient-phase costs in cancer trials exceeding $100,000 (Sertkaya et al., 2014, Moore et al.,

2020),17 with combination therapy trials enrolling 116.2 patients on average.18 Various enti-

ties may conduct combination trials, including private firms, universities, government agencies

(including the National Cancer Institute, NCI), and other research institutions.19 These trials

can occur at different stages of a drug’s life cycle. While most drugs are initially approved for

solo use, some receive their first approval as part of a combination therapy.

In the spirit of Coase (1960), firms may attempt to internalize the market expansion exter-

nality by collaborating on trials (splitting trial costs) or contracting over the resulting revenues.

However, such negotiations are limited in practice by a variety of frictions, including uncer-

tainty about commercial potential of regimens or newly generated IP, concerns about violating

13Combinations do not go through the same approval process as individual drugs, as the FDA does not typically
explicitly approve combinations (unless the results from a combination trial are used in support of an individual
drug’s new drug application). Combinations are instead evaluated in clinical trials, and the results are reviewed
by experts, such as oncologists, before being included in treatment guidelines.

14For example, CMS and the private insurer UnitedHealthcare use the NCCN Compendium (National Compre-
hensive Cancer Network, 2024) as their reference for oncology coverage policy. UnitedHealthcare requires prior
authorization for these treatments, which necessitates the regimen be included in the NCCN Compendium.

15Phase I trials focus on safety and determining dose range. Phase II trials evaluate efficacy, and Phase III trials
evaluate efficacy relative to the current standard of care.

16This success rate is calculated as the fraction of regimens trialed (in any phase) that appear in cancer treatment
guidelines (Chu and DeVita, 2019) and are taken by patients in our drug usage microdata. We discuss these
guidelines and drug usage microdata in more detail in Sections 2.2 and 4.3. Wong et al. (2019) estimates a
success rate of 3.4% for oncology drugs, where the success rate is measured as the fraction of trialed drugs
(single-agents) that receive FDA approval. The success rate we measure differs for two reasons. First, it is a
success rate of combination therapies rather than individual drugs. Second, our definition of success is more
restrictive in that we require the combination therapy to appear in treatment guidelines and be taken by patients.

17A breakdown of the cost components of clinical trials using data from industry reports is included in Appendix
G.

18Unger et al. (2019) estimates costs for a subset Phase 3 trials run through the National Cancer Institute
Clinical Trial Network, finding an average cost to the NCI of $16.6 million per trial.

19The NCI allocated approximately $857 million to research projects conducting clinical trials in 2022 (NCI,
2022b) out of its budget of $6.8 billion. The NCI also allocates significant funds to projects such as Cancer Centers
and Clinical Cooperative Groups, which may also fund clinical trials (NCI, 2022a).
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the IP of component drugs, potential liabilities associated with the combination and negative

effects on component drugs, and potential antitrust enforcement (Humphrey et al., 2011; In-

stitute of Medicine et al., 2012; Deng, 2015; Boshuizen and Peeper, 2020; Podkonjak et al.,

2021).20

The price of a combination therapy is constrained to be the sum of the prices of component

drugs, precluding price discrimination based on whether a particular drug is used in a regimen.

This feature limits a firm’s ability to extract surplus from innovating combination therapies,

and occurs for two key reasons. First, the drugs in combination therapies are typically not

packaged together, as drugs are taken over the course of many days or weeks and in dosages

that depend specifically on patient characteristics (e.g., measurements of the tumor), as shown

in the example regimens in Table 1. This feature distinguishes cancer combination therapies

from from fixed-dose combinations (e.g., Adderall) in which multiple drugs are packaged in a

single physical dosage form (see, e.g., Cao and Chatterjee, 2023), and patenting is possible.

Second, doctors’ right to prescribe drugs for off-label use allows them to use any treatment

regimen that has successfully completed clinical trials by simply prescribing and combining

the individual drugs for their patients, making “self-production” of the regimen easy. These

features reduce the value of patents for combinations, and pharmaceutical firms have generally

not obtained exclusivity extensions for new combinations.21

2.2 Data

Making progress on characterizing incentives to innovate combinations requires data on

cancer drug characteristics, clinical trials, treatment guidelines, drug usage and prices, and

patient characteristics. We summarize each component in this section, while a detailed de-

scription of the data and sample construction procedure is given in Appendix A.

Cancer Drugs and Characteristics: We combine data from GlobalData, Drugs@FDA, and

20For example, uncertainty regarding the effectiveness and attributes of combination therapies can lead to
imperfect or asymmetric information among stakeholders. Moreover, drug owners may have dynamic incentives
to free ride on the combination innovations developed by others. These frictions, and others, are discussed in
detail in Appendix G.

21In general, firms may apply for New Clinical Investigation (NCI) exclusivity for demonstrating that a drug
(or drug in a combination) is effective for some new indication not covered in the initial NDA. However, the
exclusivity term that may be granted from successfully trialing a drug in a combination for a new indication will
only apply to that new indication, rather than the original indications the drug was approved for. Enforcement of
this exclusivity is difficult, especially for combinations, as the FDA may approve ANDAs for the original indications
during this NCI exclusivity period. The potential to arbitrage across regimens and indications limits the usefulness
of this type of exclusivity extension. We describe these regulatory details in more detail in Appendix G. We also
we use data from the FDA Orange Book (Durvasula et al., 2023) to confirm that exclusivity extensions due to
successful combination therapy clinical trials are relatively rare in practice, which is consistent with the small
benefits from this type of NCI exclusivity.
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the Surveillance, Epidemiology, and End Results (SEER) Program to construct a comprehen-

sive list of cancer drugs and their characteristics. Our primary source is GlobalData, which

provides information on approximately 27,000 pipeline and marketed oncology drugs.22 This

database includes details on original drug manufacturers (i.e., patent holders), patent and ex-

clusivity information, and other drug characteristics. The earliest drugs in our sample were

approved in the 1950s, and we have information on drugs through 2023, including investi-

gational drugs. For drugs marketed in the US, we supplement this data with information on

generic competition from Drugs@FDA, quantified by the number of approved Abbreviated New

Drug Applications (ANDAs). Finally, we use data from the SEER CanMED Healthcare Common

Procedure Coding System (HCPCS) database to compile current and historical HCPCS codes

for each drug, which we use to identify patient usage of drugs delivered in an inpatient or

outpatient setting.

Clinical Trials: We use a registry of privately and publicly-funded clinical trials from Clin-

icalTrials.gov, focusing on trials run between 1990 and 2022. Submission of trials run in the

US has been mandatory since 2007,23 though many trials were documented prior to this date

due to factors such as patient recruitment needs, funding requirements, or journal publication

mandates. This data includes information on the particular treatment tested (including what

drugs), sponsor, collaborators, indication, start and end dates, and trial phase.24 We classify

sponsors as either private or public, where public includes the NIH, universities, and other

non-profit research groups.

We subset to oncology clinical trials using the list of oncology Medical Subject Headings

(MeSH) terms and free text keywords in Califf et al. (2012). We use a large language model,

OpenAI’s GPT-4o, to extract information on drugs used in the control and treatment arm(s) of

each trial and remove oncology trials that use only non-pharmaceutical treatment methods like

surgery or radiation.25 Our sample of clinical trials includes trials that test at least one drug

22GlobalData acquires its information from myriad sources, including scientific publications and conferences,
company annual reports, regulatory filings, and direct contact with companies. Their comprehensive coverage of
pipeline drugs begins in 2000, and marketed drugs in 1983.

23We will use clinical trials run from 1990 to 2022 as our main sample, but we show robustness of our analysis
to focusing on clinical trials run after 2007 given the beginning of mandatory reporting in that year.

24ClinicalTrials.gov defines a “sponsor” as the entity that “initiates the study and who has authority and control
over the study”, while a “collaborator” is any organization other than the sponsor that provides support (funding,
design, implementation, data analysis, or reporting). The Food and Drug Administration Amendments Act of 2007
requires that clinical trial information submissions include the sponsor, but not collaborators (42 CFR 11). It is
not clear how extensive reporting of collaborators is. Manual comparison of a small set of clinical trials and their
associated publications (author affiliations and funding source disclosure) suggests that the collaborators field for
firms involved in the trial is relatively complete, though additional work could be done to further complete the
field by examining funding disclosures in research papers associated with trials.

25We test the performance of this approach by constructing a random sample of 100 oncology clinical trials
from 2007. We manually extract the drugs used in the treatment arm(s) of each trial, if applicable. The large
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with at least one location in the United States,26 leaving approximately 28,000 trials. We merge

this panel of clinical trials with the drug information constructed above for each drug used in a

treatment arm of the trial. This requires harmonizing sponsor names and drug names over the

life-cycle (investigational, branded, generic)—details about our merging procedure are given

in Appendix A. Approximately 85% of trialed drugs merge to GlobalData, and drugs that do not

merge are typically pipeline drugs that are trialed in at most Phase I. We define a combination

trial as a trial that tests at least two drugs together in a treatment arm.

Table 2a presents summary statistics for the clinical trials in our sample, which includes

both single-agent and combination therapy trials. 58.1% of trials are for combination therapies.

The median number of drugs tested in a combination trial is 2, with a median of 1 generic drug

and 1 on-patent drug as a component. The table additionally shows the fraction of trials run

by different lead sponsor–collaborator pairs. Firms with no collaborators run a higher fraction

of single-agent trials (38.7%) than combination trials (24.2%). There are relatively few trials

with multiple firms collaborating (3.9% of single-agent trials, 4.8% of combination trials), and

there is a higher fraction of firm-public collaboration for combination trials (21.7%) compared

to single-agent trials (13.6%). Combination therapy trials enroll more patients than single-

agent trials on average, with a mean enrollment of 116.2 patients compared to 104.0 patients.

Table 2b presents summary statistics for drugs that are trialed in cancer clinical trials in our

sample. Trials may include drugs that are approved or that are still investigational (i.e., not

yet approved), whether for single-agent therapies or combination therapies.

Cancer Treatment Guidelines: While the clinical trial data provide a comprehensive list

of trialed single-agent and combination therapies, it is difficult to parse the results of those

trials to determine what regimens were “successful.”27 We use treatment guidelines from the

medical literature (Chu and DeVita, 2019) to define successful regimens for each cancer, and

this subset of successful regimens then forms the set of products for our demand system, de-

veloped in Section 4.28 These treatment guidelines are a reference for oncologists when de-

termining treatment for a patient, and are updated regularly to incorporate new treatments.

These guidelines contain similar regimens to compendia that are used by insurers to determine

coverage of cancer drugs, such as the National Comprehensive Cancer Network (2024) com-

language model produces the correct result for 98 of the 100 trials. In one case, the model omitted a component
drug of combination, and in the other failed case it incorrectly classified a surgical implement as a drug.

26We focus on trials with at least one location in the United States as these trials are the most likely to be
included in treatment guidelines published in the US and thus taken in the US, which our demand data covers.

27Furthermore, many cancer clinical trials do not provide timely public reporting of results (Kao et al., 2023).
28While we could use the set of all trialed regimens as the products in the demand system, it is computationally

convenient to focus on the (significantly) smaller set of successful regimens as defined by Chu and DeVita (2019).
We show that these regimens account for most of patient drug usage, and “unsuccessful” or regimens that have
not been trialed typically see little use.
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Table 2: Cancer Clinical Trial and Drug Summary Statistics

(a) Cancer Drug Clinical Trials

Single Combination

Mean Median Std Dev Mean Median Std Dev
Number of Drugs 1.0 1.0 0.0 3.03 2.0 1.64
Number of Generic Drugs 0.07 0.0 0.25 1.0 1.0 1.37
Number of Patented Drug Owners 1.0 1.0 0.0 1.5 1.0 0.87
Sponsor Firm Solo 0.39 0.24
Sponsor Firm + Firm 0.04 0.05
Sponsor Firm + Public 0.14 0.22
Sponsor Public Solo 0.44 0.49
Enrollment 104.01 38.0 255.15 116.16 40.0 276.59

Total Trials 11,959 16,596

(b) Cancer Drugs in Trials

Approved Not Approved

Mean Median Std Dev Mean Median Std Dev
Number of Drugs 399 3,281
Total Trials 107.9 25.0 223.61 3.3 1.0 7.32
Fraction Combination 0.68 0.75 0.28 0.47 0.5 0.44
Biologic Indicator 0.09 0.07

Notes: Panel 2a shows summary statistics of characteristics of clinical trials in our sample, separately for single
(columns 1-3) and combination (columns 4-7) trials. Number of Drugs is the number of drugs included in treat-
ment arms of the trial. Number of Generic drugs is the number of generic drugs (determined at the start of the
trial) included in the treatment arms of the trial. Number of Patented Drug Owners is the number of unique firms
that own on-patent drugs in the regimen (calculated at the time of trial). Sponsor Firm Solo is the fraction of
trials run with a firm as the lead sponsor and no collaborators. Sponsor Firm + Firm is the fraction of trials run
with a firm as the lead sponsor with a firm (and no other agents) as a collaborator. Sponsor Firm + Public is the
fraction of trials with a Firm and Public innovator collaborating. Sponsor Public Solo is the fraction of trials run
with a public innovator as the lead sponsor and no firms (but potentially other public innovators) as collaborators.
Enrollment is the number of patients enrolled in the trial. Panel 2b shows summary statistics of drugs that are
trialed in cancer clinical trials, separately for drugs that were eventually approved (i.e., approved at some point
during our sample) (columns 1-2) versus not (or not yet) approved during our sample period (columns 3-4).
Number of Drugs is the number of unique drugs in each group. Total Trials is the total number of cancer drug
clinical trials a drug is involved in. Fraction combination is the fraction of a drug’s trials that are for combinations.
Biologic indicator is an indicator of whether a drug is a biologic drug.
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pendium. Chu and DeVita (2019) contains information about approximately 700 regimens for

40 different cancers. The average number of drugs included in a regimen is 2.05, with a range

between 1 and 11. Each recommended regimen cites a scientific paper that presents results

from a pivotal clinical trial showing that regimen’s efficacy. When new combination therapies

demonstrate efficacy in clinical trials, they may be incorporated into existing guidelines, ei-

ther as additional options, modifications to current protocols, or in some cases, replacements

for older treatments, depending on their comparative benefits and safety profiles for certain

patients.

Cancer Drug Usage, Prices, and Patients: To determine regimen usage, prices, and pa-

tient demographics, we analyze claims and enrollment data from two sources: the Center for

Medicare and Medicaid Services (CMS) for traditional Medicare beneficiaries, and Marketscan

Commercial Claims and Encounters database for a sample of privately insured individuals. The

Medicare data is from 1998 to 2019, and includes information about a 20% random sample

of Medicare beneficiaries, of which we observe claims information for traditional Medicare

beneficiaries.29 The MarketScan data is from 1996 to 2013, and is a sample of individuals

under age 65 with employer-provided health insurance and their dependents. The sample of

patients included in Marketscan expands considerably throughout the sample period, covering

approximately 3 million individuals in 1996 and over 50 million by 2013. We discuss this data,

including how we measure regimen usage and prices, in detail in Section 4.3.

3 Stylized Model and Descriptive Evidence

This section introduces a stylized model of combination innovation in the pharmaceutical

industry and presents evidence supporting its predictions regarding combination innovation

decisions. We first use the model to characterize privately and socially optimal innovation

decisions, highlighting the existence of market expansion externalities and missing property

rights for combinations. The model also reveals the economic primitives underlying the inno-

vation externalities that we estimate in Sections 4 and 5.

We then document three facts consistent with predictions of the stylized model with mar-

ket expansion externalities: Private firms are significantly less likely than public researchers to

trial combinations relative to single-drug therapies (Fact 1). When private firms do trial com-

binations, they are biased toward combinations consisting of their own branded drugs (Fact

29Physician-administered drug claims from Medicare Advantage (Part C) patients are excluded from our CMS
data. These Part C plans were first introduced in 1985, and enrollment has dramatically increased since the
beginning of our sample. At the end of our sample, 2019, approximately 39% of Medicare beneficiaries were
enrolled in a Medicare Advantage plan, with the remaining 61% enrolled in traditional Medicare, as reported by
the Kaiser Kaiser Family Foundation (Ochieng et al., 2023).
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2). Finally, after (and in anticipation of) generic entry, a drug is less likely to be trialed in a

combination by its original owner, but it is more likely to be trialed by other firms, suggesting

potential delays in combination innovation due to intellectual property protections (Fact 3).

These facts demonstrate that private innovation decisions are driven by the ownership struc-

ture of drugs, and thus that market expansion and missing property rights decisively shape

the magnitude, direction, and timing of combination innovation. They also suggest inefficient

underinvestment in combination therapies by firms, which we explore in greater detail in the

remainder of the paper.

3.1 A Stylized Model of Externalities Arising from Combination Innovation

The key features of combination innovation can be best understood using a static model

of the market for drug regimens used to treat a given cancer.30 A regimen is a set of drugs

r = {dr1, . . . , drn} taken in fixed proportions by a patient, and for simplicity we assume that a

patient who takes regimen r consumes one unit of each drug d ∈ r. The set of all drugs that can

be combined to form regimens is D, and the set of all regimens that have been introduced and

can be taken by patients is R ⊆ 2D, where the power set 2D is the set of all possible regimens.

Each drug d is either generic or owned by a firm, and we identify each firm with the set of

drugs it owns, f =
�

d f 1, . . . , d f n

	

. The set of all firms is F ⊆ 2D.

Drug d is produced at marginal cost mcd ≥ 0 and sold at price pd ≥ mcd .31 As discussed

in Section 2, firms cannot price discriminate between patients taking different regimens, so

the price of any regimen r is simply the sum of the underlying drug prices, pr =
∑

d∈r pd . The

share of patients who take regimen r is sr(p), and we normalize the total mass of patients to

one for convenience. The profits earned by drug d through regimen r are

πdr(p) ≡ (pd −mcd) sr(p)1 [d ∈ r] .

The total profits earned by drug d are then πd(p)≡
∑

r∈Rπdr(p), while we assume profits for

generic drugs are zero. We let CS(p) denote aggregate consumer surplus, and we denote total

30We incorporate dynamics into our structural model in Section 6.
31In this stylized model, we make a simplifying assumption for exposition that each drug has a single price that

all patients pay, ignoring the potential difference between list prices and out-of-pocket prices and price dispersion
across patients. We model these features in our empirical framework in Section 4.
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welfare (Marshallian surplus) by32

W (p) ≡ CS(p) +
∑

d∈D

πd(p).

A pharmaceutical firm can pay a fixed cost κ > 0 to run a clinical trial for a new regimen

r+. With probability χ > 0 the trial is successful and the regimen can be taken by patients;

with complementary probability 1−χ the trial fails. When successful, the addition of the “new

product” r+ leads to new market shares s̃r(p) and a new set of equilibrium drug prices p̃. The

change in shares reflects how patients adjust their regimen choices at each price vector, while

the change in equilibrium prices reflects pricing conduct in the market. We use tildes (∼)

to distinguish post-introduction values from pre-introduction values, and we use ∆ to denote

the equilibrium change in a value. For example, π̃d(p) denotes the post-introduction profit

function for drug d, while ∆πd ≡ π̃d(p̃)−πd(p) denotes the change in equilibrium profits.

Private versus Socially Optimal Innovation Incentives: In this static model, a private

firm f ∈ F finds it profitable to trial the new regimen r+ given existing regimens R if and only

if the expected change in its profits exceeds the trial cost, χ
∑

d∈ f ∆πd > κ. We can decompose

the change in profits ∆πd for each drug d into three terms:

∆πd =
∑

r∈R

(pd −mcd) [s̃r (p)− sr (p)]1 [d ∈ r]

︸ ︷︷ ︸

business stealing

+ (pd −mcd) s̃r+(p)1
�

d ∈ r+
�

︸ ︷︷ ︸

market expansion

+
∑

r∈R∪{r+}

[(p̃d −mcd) s̃r (p̃)− (pd −mcd) s̃r (p)]1 [d ∈ r]

︸ ︷︷ ︸

price adjustment

. (3.1)

The first term captures the change in the profits drug d derives from existing regimens r ∈R,

holding initial prices p fixed. This business stealing effect arises as patients substitute away

from existing regimens and toward to the new regimen r+, and it is weakly negative provided

that patient preferences satisfy the Weak Axiom of Revealed Preference (WARP). The second

component is instead weakly positive and captures the profits earned from the new regimen

r+ at initial prices p, which we refer to as the market expansion effect. At fixed prices, any drug

not used in the new regimen d 6∈ r+ earns lower profits because of the business stealing effect,

while a drug used in the new regimen d ∈ r+ earns higher profits as the market expansion

32In this stylized model, we exclude insurer costs from the total welfare function for simplicity. Patients are
often not responsible for the full cost of drugs and the total welfare function must capture insurer welfare. We
defer analysis of insurers (both public and private) to the empirical model in Section 4.
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effect dominates the business stealing effect.33 Without property rights over regimens, a firm

can only profit from the introduction of r+ if it owns a drug used in this regimen, and even then

only if the market expansion effect dominates the business stealing effect on average across

its drugs. The balance of these effects depends critically on patient substitution patterns. The

final term reflects all changes to profits because of the equilibrium price adjustment from p

to p̃. This adjustment depends on pricing conduct, drug ownership, and the change in the

demand system. It affects both the observed market shares s̃r(p̃) and the margins p̃d −mcd .

To derive the net externality of firm f ’s introduction of regimen r+, we compare the change

in surplus internalized by the firm to the change in total welfare. The change in total welfare

includes both the change in consumer surplus and the change in profits:

∆W = ∆CS +
∑

d∈D

∆πd .

The net externality of firm f ’s introduction of regimen r+ is then:34

Net Externalityr+ ≡ ∆CS +
∑

d 6∈ f

∆πd . (3.2)

The first term is the consumer surplus externality (i.e., the standard non-appropriability

of consumer surplus that arises in innovation), and WARP implies that it is weakly positive

when prices are fixed (p̃ = p).35 This externality is not specific to combination innovation and

arises whenever an innovating firm cannot appropriate all consumer surplus, though it may be

particularly large in this setting since firms cannot price discriminate by regimen. The second

term is the net profit externality, which captures the pecuniary externality on other firms f ′ 6= f .

As the decomposition (3.1) demonstrates, the net profit externality includes business stealing,

market expansion, and price adjustment effects. Even at fixed prices, the presence of business

stealing implies that the net profit externality, and thus the overall net externality, may be

positive or negative.36 But if the positive effects on consumers through increased surplus and

33More generally, the business stealing and market expansion effects arise whenever a firm innovates a new
product that is respectively substitutable or complementary with an existing product. A distinctive feature of
combination innovation is that these effects appear simultaneously.

34The externality from the firm’s decision to trial regimen r+ is simply the net externality multiplied by the
success probability χ.

35When quantifying these externalities in Section 5, we additionally include a term for the fiscal externality on
insurers that pay remaining drug costs after patient deductibles, co-payments, or co-insurance. The change in
this net surplus (consumer surplus minus insurer costs) may be positive or negative.

36The endogenous growth literature identifies another externality, knowledge spillovers, which arises when one
firm’s innovation builds on (and thus benefits from) another firm’s innovation (Romer, 1990). This externality
plays a critical role in combination innovation, because new combinations often use components invented by
different firms. Knowledge spillovers are pervasive but challenging to measure in the pharmaceutical industry, so
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other firms through market expansion dominate business stealing, then firms will underinvest

in combination innovation relative to the social planner.

Measuring Innovation Externalities: The stylized model clarifies the economic primitives

that we must measure in order to quantify the net externality from combination innovation

and any corresponding inefficiency. The definition of the net externality (3.2) from firm f ’s

introduction of regimen r+ requires that we measure the corresponding change in consumer

surplus and the change in profits earned by other firms’ drugs, neither of which are directly

observable. In Section 4, we estimate a discrete-choice random coefficients demand system for

regimens that allows us to compute ∆CS given prices p and p̃. Similarly, to recover marginal

costs of drug production and compute the profit change ∆πd , we estimate a model of Nash

bargaining over drug prices between manufacturers and insurers. Both the demand system and

the pricing model are crucial for decomposing the profit change∆πd into the business stealing,

market expansion, and price adjustment terms in (3.1). To assess the extent to which the net

externality yields inefficient innovation decisions by firms, we must additionally recover the

innovation fixed costs κ and the success probability χ. In Section 6 we estimate a dynamic

innovation model that allows us to recover these parameters, making use of the estimated

demand system and pricing model as well as firms’ observed clinical trial decisions.

Before recovering these primitives, we first document three facts related, respectively, to

the amount, direction and timing of combination innovation. These facts are consistent with

predictions of the stylized model having positive market expansion externalities and missing

property rights that shape firm incentives to innovate combinations, and highlight the impor-

tance of drug ownership in determining the amount, direction, and timing of combination

innovation.

3.2 Who Funds Combination Innovation? Single versus Combination Trials

Our first fact explores incentives to innovate single versus combination therapies, moti-

vated by a prediction of the stylized model: all else equal (e.g., regimen quality, price), market

expansion externalities imply that a firm will be less likely than the social planner to trial a

particular combination compared to a single-agent therapy. The data support this prediction:

Fact 1. A firm’s research portfolio consists of a smaller share of combination trials than that of a

social planner or its proxy (social-welfare minded public researchers).

To provide evidence for this fact, we calculate how many cancer combination and single-

drug trials are sponsored by publicly-funded innovators versus firms. In Figure 1, we see that

we limit our focus to pecuniary externalities.
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Figure 1: Clinical Trials by Funding Type

Notes: Figure shows the number of trials run by different sponsors broken into combination (blue) and single
drug trials (gray) and the fraction of that sponsor’s trials that are for combinations (black number). The “Public
Sponsor” bar includes trials with at least one public sponsor. The “No Public Sponsor (Only Firm)” bar includes
trials that are solely sponsored by firms. Robust standard errors are in parentheses on each bar, which come from
a trial-level regression of an indicator for being a combination trial on sponsor type. The corresponding regression
table is shown in Appendix B, where we also show robustness with respect to the time period of trials included,
additional controls (cancer, trial submission year, and trial size), and estimating separately for collaborative trials.

trials with public funding are the most numerous and more likely to trial combination therapies

(63% of trials are for combinations)37 compared to trials with only firm sponsors (49% of trials

are for combinations).38 Standard errors of a trial-level regression of an indicator of being a

combination trial on indicators for different funding types are also displayed, indicating statis-

tically significant differences between the combination trialing behaviors of different funding

types.39

This fact demonstrates that firms are biased away from clinical trials for combination ther-

apies relative to publicly-funded researchers. Firms may be dissuaded from trialing a regimen

if many of the resulting profits accrue to other firms that own drugs in the same regimen, un-

like publicly-funded researchers with other (potentially aggregate welfare-minded) objectives.

However, this fact is also consistent with the idea that firms are “crowded out” of funding clin-

ical trials for combination therapies by public institutions, so this fact does not provide direct

evidence of inefficient underinvestment. We disentangle these effects in the remaining facts.

37We also note that public institutions run many single drug clinical trials, often for second uses or indications
that were not tested by the drug’s original manufacturer. We decompose these types of trials in Appendix A.

38Collaborative trials between firms and public sponsors are included in the “Public Sponsor” bar (22% of total
combination trials), while collaborations between 2 or more firms (and no public sponsors) are included in the
“No Public Sponsor” bar (5% of total combination trials).

39We show robustness of this fact and the remaining facts in this section to focusing on clinical trials run after
2007 in Appendix B. We also show robustness to controlling for other trial characteristics, such as cancer type
and trial (submission) year.
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3.3 What is the Direction of Combination Innovation? Trials and Ownership

Our next fact characterizes the direction of combination innovation by calculating the

probability of running a particular combination clinical trial as a function of drug ownership.

In the stylized model, all else equal, a firm earns the highest expected profits from combination

regimens that consist primarily of its own drugs, compared to drugs owned by other firms or

generic drugs. Compared to a firm, the social planner is more likely to trial generic drugs, since

it considers the positive externality on consumers. The data support this prediction:

Fact 2. Firms are more likely to trial combinations of their own branded drugs than combinations

with other firms’ branded drugs or generic drugs. Compared to firms, publicly-funded researchers

are more likely to trial combinations with generic drugs.

To demonstrate this empirically, we construct a panel of trialing decisions for two-drug

combinations and calculate the probability of trialing a combination as a function of drug

ownership. We focus on two-drug combinations for ease of exposition, which include approx-

imately 50% of the combination trials in our data.40 Let Dt denote the set of all drugs discov-

ered by the beginning of year t, and let L2t ⊂ D2
t denote the set of all two-drug clinical trials

r = (d1, d2) that have yet to be run (but can be run) by the beginning of year t.41 As discussed

earlier, an unusual and attractive feature of this setting is that we are able to observe the risk

set of potential innovations; in other words, we can observe combinations that have not been

trialed since we can enumerate the set of potential combinations for any given set of drugs.

We classify two-drug combinations in L2t into groups depending on whether the components

are branded or generic and owned by the same or different firms.

We then measure how clinical trial decisions deviate from the benchmark in which clinical

trials are chosen uniformly from all possible clinical trials L2t . Let Li t denote the total number

of trials run by innovator of type i in year t, where i is either private (firms) or public. If these

trials were chosen uniformly at random, the probability that any given trial r is chosen (with

replacement) would be

βunif (Li t) = 1−
�

1−
1
|L2t |

�Li t

.

We then estimate the following equation for private innovators i, pooling across two-drug

40An extension of this fact to 3 or more drugs amplifies the general patterns of this exercise, and is discussed
in Appendix B.

41For computational tractability, we restrict to drugs that are trialed in at least one Phase 2 trial (or later phases).
This drops drugs that are investigational and fail Phase 1 trials.
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combination regimens r and years t:

Trial Nowri t

βunif (Li t)
= γ1 (2-Brand Same)ri t + γ2 (2-Brand Different)ri t + γ3 (Has Generic)ri t + εri t ,

(3.3)

where Trial Nowri t is an indicator that regimen r is trialed by innovator type i in year t. Each

coefficient γk measures how many times more likely an innovator of type i is to run a given

trial of type k in a year relative to uniform selection from the set of available combinations. We

estimate a similar equation for public innovators, where the types of combinations included

are 2-Brand, Brand and Generic, and 2-Generic.

Figure 2 plots the estimated coefficients, where firms are shown on the left and public

innovators the right. Firms have a significantly higher relative probability of trialing combi-

nations consisting of two branded drugs owned by the same firm (approximately 11 times

more likely than uniformly at random) compared to combinations that contain two branded

drugs owned by different firms (relative probability of .46) or combinations with a generic

drug (relative probability of 1.03). Compared to firms, public innovators are more likely to

trial combinations with a branded drug and a generic drug (relative probability of 1.35) or

two generic drugs (relative probability of 5.05).

While this fact is consistent with firms directing combination innovation based on finan-

cial incentives towards high-profit own-drug combinations and away from combinations with

market expansion externalities on other firms, it could also stem from a number of confound-

ing factors. First, firms might be more familiar with their own drugs and therefore more likely

to trial them in combinations. Second, running trials with a firms’ own drugs might be sig-

nificantly less expensive. Third, drugs produced by the same firm might be more likely to

be complementary because of specialization in particular research areas.42 Finally, public in-

novation in combinations with drugs owned by different firms or generic drugs could cause

crowd-out. We present evidence against each of these alternative hypotheses.

To address the potential for intra-firm familiarity, we refine the types of combinations con-

sidered in Equation (3.3) to exploit variation in ownership over time. Focusing on combina-

tions that consist of a branded drug and a generic drug, we can decompose these combinations

into two groups: those where the two drugs were both initially owned (i.e., patented) by the

same firm or not. Greater familiarity with own drugs suggests that firm innovation decisions

would be significantly biased towards combinations where they initially had patents for both
42The other direction is also possible: as many combinations are often effective through reducing drug resis-

tance, if a firm is more likely to produce multiple drugs with similar mechanisms of action, then its drugs may be
less likely to form effective combinations.
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Figure 2: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status

(a) Firm (b) Public

Notes: Figure shows estimated γk coefficients of Equation (3.3). Private innovators (firms) are on the left panel,
and public innovators on the right. The dotted line at 1 displays what trialing behavior would look like if innova-
tors selected combinations uniformly at random from available combinations. 95% confidence intervals for the
regression coefficients calculated from robust standard errors are displayed on each bar. Regression tables and
additional robustness checks are given in Appendix B.

drugs versus only one. Estimating an expanded version of Equation (3.3) largely rejects this

hypothesis. Figure 3a plots the key coefficients. Firms trial combinations of a branded drug

and a generic drug where both drugs were initially owned by the same firm 1.76 (.56) times

more than uniformly at random (left bar), compared to 1.01 (.05) times more than uniformly

at random (right bar) when patented by different firms. This difference is small relative to

the bias towards combinations of two branded drugs by the same firm (11 times more than

uniformly at random).43

Reports of the different contributors to trialing costs suggest that the cost of the clinical

procedure, which in the case of combination trials includes the cost of the drugs and any costs

associated with administering the drugs, makes up at most 20% of total costs on average.44

This fraction is likely too small to rationalize the large difference in observed trialing decisions.

43This difference in relative probabilities between can also be explained by the small but positive profits original
patent holders may still earn from their drugs that have experienced generic entry. Generic entry erodes monopoly
profits over a number of years as patients substitute away from the branded drug, leaving higher financial incen-
tives combinations with their own generic drugs for a few years.

44We present a detailed breakdown of these trialing costs in Appendix G.
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Figure 3: Relative Probability of Trialing 2 Drugs Together – Alternative Explanations

(a) Firm (b) Public

Notes: Figure shows estimated γk coefficients of Equation (3.3), expanded to include (and only showing coeffi-
cients for) the additional categories of Brand+Generic Same and Brand+Generic Different for private innovators
and 2-Generic Same and 2-Generic Different for public innovators. Private innovators (firms) are on the left panel,
and public innovators on the right. The dotted line at 1 displays what trialing behavior would look like if innova-
tors selected combinations uniformly at random from available combinations. 95% confidence intervals for the
regression coefficients calculated from robust standard errors are displayed on each bar. Regression table given
in Appendix B.

To address the potential for intra-firm complementarity of drugs, we provide two addi-

tional pieces of evidence. First, we can conduct a similar test to the intra-familiarity test but

with public innovation decisions, where we decompose the 2-Generic category into two groups:

combinations where both generic drugs were initially patented by the same firm or not. Es-

timating an expanded version of Equation (3.3) reveals that publicly-funded innovators trial

these two types of generic drug combinations with similar relative probabilities, as shown in

Figure 3b. They trial combinations with two generic drugs originally patented by the same firm

4.66 (1.34) times more than uniformly at random (left bar) and two generic drugs originally

patented by different firms 5.07 (.31) times more than uniformly at random (right bar). Thus,

publicly-funded researchers trial combinations consisting of two generic drugs with similar

probabilities, regardless of original ownership.

The second piece of evidence against intra-firm complementarity of drugs uses data on

laboratory measures of two-drug combination efficacy. In 2017, the National Cancer Institute

(NCI) released the NCI ALMANAC (“A Large Matrix of Anti-Neoplastic Agent Combinations”):
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Figure 4: NCI ALAMANC Distribution of Tumor Growth Rates by 2-Drug Combination

Notes: Figure shows the distribution of tumor growth rates for combinations in the NCI ALMANAC, separately
for combinations consisting of drugs owned by the firm or not. Each distribution is normalized to show a density.
The mean growth rate is 72.73%, and the coefficient (SE) of a combination-level regression of the tumor growth
rate on an indicator for the combination having two drugs owned by the same with drug and cancer fixed effects
is -.67% (.15%). Regression tables and additional results are included in Appendix B.

a database of laboratory tests of all two-drug combinations derived from a set of approximately

100 FDA approved cancer drugs (Holbeck et al., 2017). The laboratory tests measure tumor

growth rates on 60 different tumor cell lines for various dosages, resulting in approximately 3

million tests. We merge drug ownership information with this database and show that combi-

nations consisting of drugs owned by the same firm or different firms result in similar tumor

growth rates, displayed in Figure 4. While the mapping between laboratory results and clin-

ical trials is not immediate, this fact suggests ex-ante measures of complementarity are not

significantly different for combinations consisting of two drugs owned by the same firm or

not.45

Finally, crowd-out by publicly-funded researchers is a less compelling explanation for low

firm activity in 2-Brand Different trials, because public institutions also run few trials with two

branded drugs (relative probability of .6) relative to other two-drug combination therapies.

Public researchers, whose objective may be closer to aggregate welfare than firms, are more

likely than firms to run trials consisting of generic drugs (relative probability of 5.05).

45Robustness checks of this result are described in detail in Appendix B, which test additional measures of
complementarity and find similar results.
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3.4 When Does Combination Innovation Occur? Trials and Generic Entry

Our final fact characterizes how the regulatory environment affects the timing of combina-

tion innovation. In the stylized model, generic entry into a drug reduces the original owner’s

incentive to trial it in combinations. In contrast, the decline in price due to generic entry may

incentivize other firms and publicly-funded innovators to trial it in new combinations.46 The

data support this prediction:

Fact 3. A cancer drug is involved in more combination therapy clinical trials after (and in an-

ticipation of) generic entry. The original firm runs fewer trials, but both other firms and public

researchers run more.

To provide evidence for this fact, we construct a panel of drugs that experience generic

entry before 2023. For each drug d and year t, we calculate the total number of combination

trials involving that drug that start in that year, and how many of those combination trials are

run by (either as lead sponsor or as a collaborator) the firm that originally patented the drug,

publicly-funded innovators, or other firms. These groups are not mutually exclusive since trials

can potentially be run with collaborators. We then estimate

Yd t = β1(Generic Indicatord t) +δt +δd + εd t , (3.4)

where Yd t is one of the counts of combination clinical trials listed above, Generic Indicatord t is

an indicator of whether drug d is within five years of experiencing generic entry at time t, δt

is a year fixed effect to control for different rates of trialing over time, and δd is a drug d fixed

effect to control for unobservable drug characteristics that affect the rate of trialing. We define

the generic indicator starting 5 years before generic entry as combination trials may start in

anticipation of generic entry, with results from the trial coming as generic entry occurs.

Table 3 summarizes the results. A drug is used in more combination trials on average in the

five years leading up to generic entry (i.e., in anticipation) and after generic entry, compared

to the period more than five years before generic entry, an 11.0% increase. The original owner

runs fewer (-59.4% decrease) and publicly-funded innovators and other firms run more (7.9%

and 41.7% increase, respectively). The increase in total trialing is driven by an increase in the

probability of a newly generic drug being trialed with an on-patent drug, as shown in Table 4.

46This holds formally when some drugs d and d ′ become “more complementary” in demand after the introduc-
tion of a new regimen r+:

∂∆πd(p)
∂ pd ′

< 0 ⇐⇒
∂ s̃r+(p)
∂ pd ′

+
∑

r∈R:d∈r

∂ s̃r(p)
∂ pd ′

<
∑

r∈R:d∈r

∂ sr(p)
∂ pd ′

.
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Table 3: Combination Trials and Generic Entry Regression

Original Firm Public Other Firms Total Trials

(1) (2) (3) (4)

Generic Indicator -0.136 0.307 0.610 0.530
(0.020) (0.181) (0.112) (0.227)

Year Fixed Effects Yes Yes Yes Yes
Drug Fixed Effects Yes Yes Yes Yes

N 3,881 3,881 3,881 3,881
Mean Pre 0.229 3.894 1.462 4.815

Notes: Table shows estimates of β in Equation (3.4). Each column shows a different count of combination trials
involving a drug: those run by the original firm that patented the drug (Column 1), publicly-funded researchers
(Column 2), other firms (Column 3) and total trials (Column 4). Robust standard errors are in parentheses.
Additional robustness checks are included in Appendix B.

This fact clarifies that the ownership status of a given drug is critical not only for the

original owner’s clinical trial decisions, but also for other firms’ and public innovators’ decisions.

Public crowd-out does not provide an explanation for this fact since overall more private trials

are run with a drug after generic entry. The timing of combination innovation is shaped by the

existing intellectual property protections, and inefficient investment by firms might result in

delayed arrival of life-saving combination therapies to market.

To summarize, these facts demonstrate that firms are generally biased away from com-

bination therapy trials, and in particular those trials that involve other firms’ branded drugs.

This is consistent with the stylized model, which together with these facts suggests inefficient

underinvestment by firms in clinical trials for combination therapies because of market expan-

sion externalities on other firms and positive spillovers to patients. We next quantify these

externalities using an empirical model of demand and pricing of cancer drugs.

4 Static Model of Drug Consumer Surplus and Profits

In this section, we develop and estimate an empirical model of cancer drug demand and

price setting, which we use to recover patient substitution patterns, consumer surplus, and

firm profits. We estimate the model using microdata on patient drug usage and prices, and in

Section 5 we use the estimated model to quantify the externalities associated with observed

introductions of combination therapies.
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Table 4: Combination Trials and Generic Entry Regression

With All Generic Total With at Least One Brand Total

(1) (2)

Generic Indicator 0.028 0.502
(0.038) (0.208)

Year Fixed Effects Yes Yes
Drug Fixed Effects Yes Yes

N 3,881 3,881
Mean Pre 0.490 4.325

Notes: Table shows estimates of β in Equation (3.4) where Yd t is either total combination trials with all generic
drugs (i.e., all other drugs in the combination are generic) (Column 1) or total combination trials with at least
one branded drug (Column 2). Robust standard errors are in parentheses.

4.1 Cancer Drug Demand

The main role of the demand model is to measure patient substitution patterns and willing-

ness to pay for different regimens, which are important inputs into measuring the externalities

from combination innovation. The model has two key features. First, it allows for comple-

mentarities between drugs by modeling demand over bundles of drugs (similar to Gentzkow,

2007), which we refer to as regimens, using insights from the medical literature (Chu and De-

Vita, 2019) to define these regimens. Allowing for complementarities across drugs is crucial

for estimating the value of trialing combinations. Second, it allows for heterogeneity in sub-

stitution patterns by patient demographics, including type of insurer, which is important for

predicting substitution patterns and price effects of combination innovation.

At each time t, each cancer patient j makes a joint decision with her doctor over what

drug regimen r, either single or combination, to take from the set of available regimens Rt .
47

The patient j has cancer c ∈ C and will consider taking only regimens recommended for that

cancer, which is subset a Rc t ⊆Rt of available regimens.48 The patient j also has an insurance

type ι ∈ I, where the set of insurance types is defined as

I = {Medicare, Medicare + Medicaid, Private}.

47By modeling this choice as a joint decision between patients, doctors, and in some cases, insurers, when
interpreting the model’s implied welfare, we make the assumption that these other agents are trying to maximize
patient utility. In reality, the utility function is some combination of patient, doctor, and insurer utility. This
assumption is common in work estimating demand for pharmaceuticals (e.g., Dubois and Lasio, 2018).

48In cases where a patient has more than one type of cancer, she will appear in each cancer’s demand system.
Generally, a patient just has one type of cancer in any given year.
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Regimen r characteristics at time t for insurer ι are given by (pr tι, x r t ,ξrι), where pr tι is

the regimen price, x r t is a vector of observable characteristics, and ξrι is unobserved (to the

econometrician) regimen quality.49 Given that our demand system is over regimens, similar to

Gentzkow (2007), this regimen quality term captures complementarity of the regimen com-

ponents. Patient j’s characteristics are given by (z j t ,ν j t ,ε j t), where z j t is a vector of patient

demographics, ν j t is a patient unobservable, and ε j t is a vector of patient-regimen preference

shocks, where each element is distributed Type I extreme value. We suppress conditioning on

cancer type c in what follows. We take t to be a month.

The utility u jr t of patient j, who has insurer ι, from taking regimen r ∈ Rt at time t is

given by the sum of a regimen-insurer mean utility term δr tι, a patient heterogeneity term µ jr t ,

and a patient-regimen preference shock ε jr t ,

u jr t = δr tι +µ jr t + ε jr t .

The regimen-insurer mean utility δr tι is given by

δr tι = αιpr tι + ξrι + ξy(t)ι +∆ξr tι,

where ξy(t)ι is a year fixed effect that captures changes in the quality of the outside option and

∆ξr tι is a structural error that captures unobserved demand shocks.50 The patient heterogene-

ity component of utility µ jr t is given by

µ jr t = θ
z
ι1a j t pr tι + θ

z
ι2a j t1r biologic + θ

z
ι3a j t1r combo + θ

z
ι4ν j t pr tι,

where age a j t is an element of z j t , 1r combo is an indicator of whether regimen r is a combination

regimen (rather than single-drug), 1r biologic is an indicator of whether r contains at least one

biologic drug,51 and ν j t is a random coefficient on price. Throughout, prices are normalized

to be in thousands of dollars, and age is divided by 100.

We include a random coefficient ν j t on price in the patient heterogeneity term to capture

unobserved supplemental insurance, heterogeneity in insurance schedules, and other hetero-

geneity in regimen prices. We specify ν j t to be a Bernoulli random variable, which takes the

49We allow regimen quality to differ across insurers as variation in cancer incidence and patient demographics
among their respective populations may influence the effectiveness of specific regimens.

50Important examples of demand shocks we do not explicitly model include drug shortages (negative shocks),
which are becoming increasingly common for certain injectable drugs (Yurukoglu et al., 2017), and marketing of
cancer drugs (a positive shock) to physicians (Carey et al., 2024).

51We do not include the individual terms (i.e., not interacted) 1r combo and 1r biologic as they are absorbed in the
regimen fixed effect. Similarly, the mean effect of price is already included in δr tι. Finally, we omit the mean
effect of age.
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value of 1 with probability ψνtι.
52 This probability is set to the average fraction of patients

with low (instead of high) cost-sharing. For Medicare and dual-enrolled Medicare patients,

ψνtι is the probability of having supplemental insurance, derived from annual aggregate data

from the Medicare Current Beneficiary Survey (MCBS). For privately insured patients, ψνtι is

the average fraction of patients who have reached their out-of-pocket maximum.53

The coefficient αι and patient heterogeneity coefficients θ z
ι1 and θ z

ι2 allow price sensitivity

to vary by insurance type.54 This is motivated by the different out-of-pocket costs associated

with different types of insurance and potential heterogeneity in price sensitivity that occurs

through the insurer (via e.g., prior authorization) or doctor. Though some Medicare patients

with supplemental insurance and privately insured patients may have low out of pocket costs

for much of their drug usage, price sensitivity may also occur through doctors or insurers. For

example, many chemotherapy and biologic drugs require prior authorization. Nevertheless,

there is evidence that many patients face high out-of-pocket costs that may affect treatment

decisions.55

The patient heterogeneity term allows patient substitution patterns to vary by patient char-

acteristics and regimen characteristics, reflecting clear patterns in the data. For example, in

the Medicare data, older patients tend to receive less expensive drugs, are less likely to re-

ceive regimens containing biologic drugs, and have a lower likelihood of taking combination

therapies, even when controlling for cancer type. We estimate the parameters in the patient

heterogeneity term by matching micro moments (discussed in detail in Section 4.4).

We define the outside option to be taking a drug regimen that does not appear in treatment

guidelines. We discuss the construction of the outside option in Section 4.3. With this outside

option, we take the decision to treat a patient with drugs rather than other means, such as

52This specification is similar to “discrete-type” random coefficients models (e.g., Berry and Jia, 2010).
53In 2022, approximately 89% of Traditional Medicare beneficiaries had some form of supplemental coverage

(Ochieng et al., 2024). In the Marketscan data, approximately 80% of claims for cancer drugs list the patient as
already having hit her out-of-pocket maximum at the time of the claim.

54Note that the price sensitivity coefficient αι can represent α̃ι × ζι, where ζι is the fraction of drug costs (i.e.,
from co-insurance, co-payments, or deductibles) that the patient pays.

55Narang and Nicholas (2017) documents significant out-of-pocket costs for Medicare patients with cancer for
a range of types of supplemental insurance using data from the Health and Retirement Study: “$2116 among
those insured by Medicaid, $2367 among those insured by the Veterans Health Administration, $5976 among
those insured by a Medicare health maintenance organization, $5492 among those with employer-sponsored
insurance, $5670 among those with Medigap insurance coverage, and $8115 among those insured by traditional
fee-for-service Medicare but without supplemental insurance coverage.” Furthermore, these OOP costs were on
average 23.7% of household income. More generally, the “financial toxicity” of cancer is a growing concern (Smith
et al., 2022). The American Cancer Society Cancer Action Network (2024) reports 47% of patients surveyed in
their 2024 Survivor Views research panel have had medical debt related to their cancer, and 25% of patients
delayed or skipped care to avoid further debt.
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surgery or radiation, as exogenous.56 We normalize the utility of the outside option as ui0t =
εi0t .

The share of patients taking regimen r at time t conditional on insurance type ι is

sr tι(pr tι) =

∫

ν

∫

z

exp
�

δr tι +µ jr t

�

1+
∑

r ′∈Rt

�

exp
�

δr ′ tι +µ jr ′ t

��dz j t dν j t .

Let Mc tι be the market size cancer type c patients at time t with insurance type ι and let Mc t

be the market size of cancer type c at time t, summing over insurance segments. We describe

the calculation of market size, regimen market shares, and regimen prices in detail in Section

4.3.

4.2 Cancer Drug Price Setting

The price setting model serves two key purposes. First, we use the model to estimate

marginal costs of drug production, which are important inputs into calculating firm profits

and externalities from innovation. Second, we estimate price setting conduct that enables

predicting counterfactual drug prices after combination innovation.

We model drug price setting as simultaneous bilateral Nash bargaining between manu-

facturers and a single insurer in each year.57 This single insurer serves as a stand-in for the

private insurance market. A bargaining model captures the role of the insurer as an inter-

mediary in determining drug prices for its relatively price inelastic beneficiaries. We assume

gross drug prices pt are bargained each year and that this gross price applies to both publicly

and privately insured patients. Indeed, since 2005, maximum reimbursement rates for drugs

covered by Medicare Part B are set to be the Average Sales Price (ASP) of the drug plus 6%,

and thus the government does not directly negotiate with manufacturers over drug prices for

its beneficiaries.

Prices pt are the gross drug prices for privately insured patients, and individual patients

may pay different amounts to receive the drug because of different insurance benefits. The

difference between the gross price and the patient price contributes to insurer costs. Some

of these costs are paid by the government (e.g., the cost after coinsurance for Medicare pa-

56A larger fraction of patients are taking cancer drugs over time (instead of exclusively other treatment modal-
ities like radiation or surgery), so our analysis likely underestimates this market expansion effect of new drug
innovations. Appendix A presents these trends. Accounting for an increasing fraction of patients taking drugs in
the analysis would require us to model innovations in other treatment modalities, which is beyond the scope of
this paper.

57We abstract from dynamic pricing concerns, including those created by Medicare Part B’s lagged-price reim-
bursement contracts (Acquatella et al., 2023).
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tients) and some are paid by private insurers (e.g., those for privately insured non-Medicare

beneficiaries).

The surplus of the private insurer, denoted by ιprivate, in the bargaining problem is a weighted

sum of consumer surplus for its beneficiaries and drug costs paid by the insurer (following, e.g.,

Capps et al., 2003, Gowrisankaran et al., 2015, Dafny et al., 2023):58

Vtιprivate
(Rt , pt) = ρ

∑

c∈C

CStιprivate
(Rt , pt , c)−

∑

c∈C

TCtιprivate
(Rt , pt , c) ,

where ρ is the relative weight the insurer places on consumers relative to its own costs. The

idea behind this objective function is that the insurer sets premiums to extract the expected

difference between surplus for its consumers net of insurer costs in a first-stage problem that

we do not model.

The weight ρ, similar to the welfare weight in Gowrisankaran et al. (2015), may be differ-

ent than 1 for a number of reasons. For example, if consumers underestimate their drug costs

(Abaluck and Gruber, 2011) or overestimate their surplus from taking drugs (e.g., overestimat-

ing the probability of requiring chemotherapy), then ρ may be greater than 1. We microfound

these reasons in Appendix D.

Consumer surplus for the private insurer’s patients with cancer c given regimens Rc t and

prices pt at time t is given by

CStιprivate
(Rt , pt , c) =

−Mc tιprivate

∫

ν

∫

z

1
αιprivate

+ θ z
ιprivate1a j t + θ z

ιprivate4ν j t
log

�

1+
∑

r∈Rc t

exp
�

δr tιprivate
+µ jr t

�

�

dz jdν j.

Total insurer costs for the private insurer’s patients with cancer c are

TCtιprivate
(Rt , pt , c) = Mc tιprivate

∑

r∈Rc t

(1− ζιprivate
)pr tsr tιprivate

(pt) ,

where ζιprivate
is the expected patient payment fraction (i.e., combining any co-payments, co-

insurance, or deductibles) from taking a regimen.

For each firm f ∈ F , let ft ⊂ D denote the set of drugs owned by the firm at time t. Firm

58We assume the consumer surplus of privately insured patients is the sum of two components. First, the
consumer surplus of patients under the age of 65, which comes from Marketscan. Second, the consumer surplus
of patients enrolled in Medicare Advantage. We do not have data on the claims of these patients, so we assume
the demand estimates for this group are the same as Traditional Medicare beneficiaries. Our Marketscan data end
in 2013, so we assume the privately insured demand primitives remain constant after this date.
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f ’s profits at time t are

π f t (pt) =
∑

ι

∑

c∈C

Mc tι

∑

d∈ ft

∑

r∈Rc t

(pd t −mcd t) sr tι (pt)1 [d ∈ r] ,

where we assume that firms have constant marginal costs of production mcd t for each of their

drugs. This profit function sums across profits from each insurance segment ι, which includes

both privately and publicly insured patients. We assume that a firm only “owns” a drug when

it is currently patented, and we do not include generic price setting in the model. Regimens

including generic drugs are still in the demand system, but the price of a generic drug is fixed

at the average price we observe for that drug in the data each year.59

The drugs in our sample can be classified into two types: small molecules and biologic

drugs. Small molecules are manufactured from chemicals and generally considered to have

very low marginal costs of production. Biologic drugs are generally manufactured from living

cells, and the costs associated with production can be substantial. We will assume that marginal

costs are zero for all small molecule drugs, but we allow for and estimate positive marginal

costs for biologic drugs.60,61

The prices p f t of drugs produced by firm f at time t satisfy

max
p f t

π f t (pt)
γ
�

Vtιprivate
(Rt , pt)− Vtιprivate

�

Rt \R f t , pt

�

�1−γ
.

The parameter γ gives the bargaining weight of a firm relative to the insurer. The insurer’s

outside option is the value when drugs from a given manufacturer are not available, holding

all remaining drug prices fixed but allowing demand to adjust. The manufacturer’s value is

simply total profits, and the manufacturer’s outside option is zero.62

4.3 Market Shares and Prices

We measure cancer regimen usage and prices by combining data from Medicare (for pub-

licly insured patients) and Marketscan (for privately insured patients), as described in Section

59While we do not model generic pricing, we allow generic drug prices to adjust exogenously as the number of
generic competitors changes.

60There is some evidence (Hill et al., 2016) that even relatively expensive small molecule drugs like small
molecule inhibitors have relatively low marginal costs of production.

61We do not consider advertising (such as detailing) to be a marginal cost. Both types of drugs may accrue
significant costs from detailing, though whether these costs are marginal is unclear.

62Our specification of the bargaining model assumes that all the profits associated with the drug go to the
manufacturer, rather than dividing profits between manufacturers and providers that deliver the drugs (e.g.,
hospitals). Hospitals likely charge positive markups on drugs (Robinson et al., 2021, Robinson et al., 2024), and
we abstract from the split of profits between hospitals and manufacturers.
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2.2. We use data from both publicly and privately insured patients for three reasons. First, in

order to estimate the value of combination innovation, we must estimate a demand system for

cancer drugs that is representative of the target market, which we define as the US population.

The Medicare data contain relatively few individuals under the age of 65, and may not capture

drug usage patterns for cancers that skew younger or have different recommended treatments

for younger patients. Second, our model of cancer drug price setting must match important

institutional features. Prices for drugs in Medicare Part B are set based on average national

sales prices of the drugs, including sales to privately insured patients. Third, a concern with

estimating price elasticities of demand from the Medicare data is the presence of unobserved

supplemental insurance (Medigap). We allow for unobservables to affect price sensitivity, but

use the privately insured patients to benchmark the price elasticities we estimate in the Medi-

care data.

To identify patients with a particular cancer in a year in the Medicare data, we combine

claims from the inpatient, outpatient, and carrier (professional provider service) fee-for-service

files. For the Marketscan data, we combine claims from the outpatient, inpatient services, and

inpatient admissions files. We classify a patient has having a particular cancer in a given year if

she has at least one claim (line) with a primary diagnosis code of that cancer, where we make a

crosswalk between diagnosis codes (ICD9 and ICD10) and types of cancers in Chu and DeVita

(2019). The vast majority of cancer drugs are delivered in a clinical outpatient setting and thus

covered by Part B for Medicare beneficiaries and medical benefits for privately insured patients

(there is a small subset of regimens that include prescription drugs that would be included in

Part D plans for Medicare beneficiaries or pharmacy benefits for privately insured patients).63

Calculating regimen usage is complicated by the fact that combination regimens are typ-

ically not packaged together (and therefore do not have their own billing codes, and instead

must be identified via the usage of component drugs in microdata) and drugs in the regimen

are taken over the course of many days or weeks. To assign patients to regimens, we use the

following algorithm. For each year and cancer, we subset to patients who we identify to have

that cancer in that year. We further subset to patients taking at least one of the drugs in a rec-

ommended regimen for that cancer in that year. The cardinality of this set of patients (scaled

by the corresponding sampling weights) is the size of the market. We pick a number of days

N , where N = 30 is our baseline assumption. For each patient and each day she takes a cancer

drug, we make a list of all drugs she takes N days before or N days after the current day. We

63For Medicare beneficiaries, enrollment in Part D is voluntary and thus we do not observe usage of prescription
drugs for patients who elect to not enroll in Part D. Furthermore, Part D was created in 2006, so we do not see
usage for these drugs before 2006. The Marketscan data include prescription drug benefits in all years of our
sample.
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assign the patient to the largest (in terms of number of component drugs) regimen she takes

during that window, if any.64 For days the patient does not take drugs but are within N days

before or after a day she does and is assigned to a particular regimen, we “fill in” these days

with the closest (in terms of days) regimen.65

We calculate each regimen’s market share at a monthly level, where the numerator is the

number of patient-days taking a given regimen in a month, and the denominator is the number

of patient-days taking any drug for that cancer in a month. A regimen’s total price (summing

patient and insurer payments) is the total spending on component drugs during the rolling

window, averaged over patient-days assigned to that regimen. This regimen assignment pro-

cedure performs well, and patients take relatively few “extra” drugs during the rolling window

(where N = 30 is our baseline assumption), less than .3 drugs on average, not included in

their regimen (but included in other recommended regimens for that cancer).66 The average

share of the inside option (taking one of the recommended regimens) is 0.77 for the Medicare

dataset and 0.76 for the Marketscan dataset.

There is both observed and unobserved regimen price dispersion across patients. In the

Medicare and Marketscan datasets, there is observed priced dispersion across patients because

of variation in quantities of component drugs taken by patients and provider markups.67 For

privately insured patients, there is observed price dispersion in the patient’s financial respon-

sibility (the sum of deductibles, co-pays, and co-insurance). For Medicare beneficiaries, there

is additional price dispersion because of Medicaid dual enrollment and private supplemental

insurance (Medigap) plans, the latter of which we do not observe. In our analysis, we abstract

away from price dispersion due to differences in quantities of component drugs and provider

markups by considering average prices across all patients, and we account for both observed

and unobserved price incidence on patients in our demand model.

We obtain patient characteristics (e.g., age) from the enrollment files in each dataset.

We use aggregate data from the Medicare Current Beneficiary Survey to calculate rates of

64For example, suppose the set of recommended regimens for a cancer is given by {{A, B, C}, {A, D}, {A, C}}.
Suppose the patient takes drugs A, B, C within N days of a date τ. The algorithm would assign the patient to
regimen {A, B, C} (not regimen {A, C}) on date τ. If the patient takes drugs A, B, C , D within N days of date τ the
algorithm would still assign the patient to regimen {A, B, C} at date τ, denoting drug D as an “extra drug.”

65More precisely, suppose a patient takes drugs for regimen r and is thus assigned to regimen r on dates she
takes the component drugs. Suppose these dates are January 20th and 25th. The algorithm would “fill in” dates
and assign the patient to take regimen r for N days before January 20th, between January 20th and 25th, and
for N days after January 25th. If a patient is assigned to more than one regimen on different dates, the algorithm
fills in the remaining dates using the closest (in terms of days) regimen.

66See Appendix A for additional details.
67One important source of unmodeled price dispersion is the 340B drug pricing program (see Levengood et al.,

2024 for a review of its effects on drug access and providers), which provides certain healthcare organizations
(those serving many uninsured or low-income patients) with discounts on outpatient drugs.
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supplemental insurance over time.

We define the market size of a particular insurance segment, cancer type, time to be the

total number of patients in the US taking drugs for that cancer at time t. We scale the number

of patients observed in the Medicare data to match the total population of traditional Medi-

care and Medicare Advantage patients, and we scale the number of patients observed in the

Marketscan data to match the remainder of the US population.

Table 5 presents summary statistics of drug usage, prices, and patients for the Medicare

and Marketscan data. We include cancers with at least one thousand Traditional Medicare

patients in our sample taking drugs for that cancer per year on average, leaving 19 cancers.

The average total market size (summing across all cancers) is 823,839 Medicare patients and

549,694 Marketscan patients, with an average 43,360 Medicare patients per cancer and 28,931

Marketscan patients per cancer. Additional summary statistics about patient regimen usage are

presented in Appendix A.

4.4 Estimation and Identification

Demand: We estimate the demand model using a generalized method of moments (GMM)

estimator, combining aggregate sample and micro moments, following the method of Berry et

al. (1995) and best practices in Conlon and Gortmaker (2020, 2023). We use a nested fixed

point algorithm to optimize over nonlinear parameters governing patient heterogeneity, and

we concentrate out the linear parameters. We estimate the demand model separately for each

insurance type. We approximate the distribution of patient demographics zi by creating age

bins by insurance type.68

We use two types of instruments for regimen prices. The first is a baseline price-weighted

average of the number of manufacturers producing drugs in the regimen interacted with indica-

tor variables for the baseline revenue share bin of the regimen. More precisely, this instrument

bD1
r t for regimen r and time t is given by

bD1
r t =

∑

d∈r pd1nd y(t)
∑

d∈r pd1

× h1(r),

68We do not impose that the regimen fixed effects are the same across insurance types. It is possible that
the quality of the regimen for a patient depends on patient demographics, so allowing the regimen fixed effect
to vary across insurance type captures this heterogeneity. In the dynamic model in Section 6, we will make a
simplifying assumption that regimen quality is drawn from a distribution that represents average quality over
different insurance types. We find that the fixed effects are highly correlated, making this assumption reasonable
given the patterns in the data (see Appendix C). An alternative assumption would be to estimate the demand
model jointly for different insurance types and impose common regimen fixed effects.
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Table 5: Cancer Drug Usage, Price, and Patient Summary Statistics

Cancer Patients Shares Regimens Price

Total Drug Fraction Market Size Inside Combo Total Combo $
Medicare

Prostate 202,962 0.2 293,025 0.97 0.03 26 11 942
Colorectal 80,160 0.17 76,634 0.83 0.64 35 27 7,127
Head and Neck 73,280 0.05 21,252 0.59 0.19 20 12 950
Bladder 52,901 0.09 25,986 0.44 0.3 20 12 1,268
Breast 48,581 0.14 41,656 0.94 0.14 63 42 2,997
Non-Hodgkin Lymphoma 47,019 0.33 94,912 0.61 0.09 33 18 6,842
Non-Small Cell Lung 32,537 0.33 67,184 0.82 0.43 47 28 3,561
Malignant Mesothelioma 23,244 0.2 26,302 0.39 0.12 12 7 2,440
Chronic Lymphocytic Leukemia 20,030 0.13 15,360 0.97 0.19 22 10 6,179
Hepatocellular 18,235 0.24 24,370 0.61 0.17 10 3 2,968
Endometrial 17,240 0.11 9,399 0.74 0.45 15 10 720
Multiple Myeloma 16,358 0.2 15,049 0.96 0.24 27 19 9,814
Biliary Tract 16,032 0.27 26,286 0.42 0.06 8 5 1,787
Brain 14,521 0.16 12,391 0.39 0.03 9 4 3,710
Hodgkin Lymphoma 14,192 0.22 17,554 0.52 0.04 14 6 7,891
Ovarian Epithelial 13,741 0.32 26,336 0.89 0.47 24 11 2,456
Pancreatic 11,854 0.25 14,817 0.93 0.24 12 9 1,658
Gastric 7,981 0.19 9,054 0.67 0.46 18 14 806
Esophageal 4,005 0.29 6,272 0.62 0.25 9 7 349
Mean (patient weighted) 37,625 0.19 43,360 0.77 0.21 27 16 3,001

Marketscan
Prostate 55,842 0.08 42,481 0.99 0.04 25 12 1,437
Colorectal 31,978 0.25 69,599 0.87 0.63 32 26 13,416
Head and Neck 31,160 0.06 21,292 0.6 0.23 18 12 2,751
Bladder 15,282 0.07 9,617 0.49 0.4 15 12 5,125
Breast 48,604 0.19 83,918 0.98 0.16 57 38 4,902
Non-Hodgkin Lymphoma 32,120 0.29 81,790 0.45 0.13 28 17 7,922
Non-Small Cell Lung 13,092 0.4 41,438 0.87 0.51 33 21 6,195
Malignant Mesothelioma 11,948 0.23 24,252 0.35 0.13 10 7 5,360
Chronic Lymphocytic Leukemia 5,909 0.15 8,202 0.97 0.31 19 8 3,299
Hepatocellular 9,182 0.31 25,460 0.68 0.07 8 3 6,683
Endometrial 11,095 0.1 9,778 0.82 0.34 15 10 2,077
Multiple Myeloma 5,714 0.18 9,215 0.85 0.29 21 15 7,141
Biliary Tract 8,478 0.38 27,286 0.65 0.11 9 6 6,096
Brain 12,542 0.16 16,895 0.73 0.07 10 5 7,265
Hodgkin Lymphoma 15,790 0.2 28,606 0.24 0.12 10 4 4,867
Ovarian Epithelial 12,336 0.23 25,267 0.91 0.48 22 11 5,242
Pancreatic 4,242 0.31 11,683 0.95 0.29 12 9 5,984
Gastric 3,502 0.29 8,665 0.74 0.52 18 16 4,886
Esophageal 1,568 0.37 4,250 0.64 0.41 10 9 3,251
Mean (patient weighted) 17,389 0.19 28,931 0.76 0.23 26 17 5,411

Notes: Table shows summary statistics for Medicare patients (top panel) and Marketscan patients (bottom panel) by cancer for the 19 cancers
included in our sample. The table is sorted in descending order of the median (over years) number of Medicare patients we observe with that
cancer. Patients Total is the median (over years) number of patients we observe in each dataset that have a diagnosis code for a particular
type of cancer in a year. The Medicare data is a 20% sample of beneficiaries, and we observe claims for traditional Medicare beneficiaries.
The number of individuals included in the Marketscan dataset grows considerably during the sample period, as discussed in the main text.
Drug Fraction is the median (over years) fraction of those patients that receive at least one cancer drug in that year. Market Size is the median
(over years) market size we consider for each cancer, defined to be the number of patients taking drugs for that cancer. We calculate this
measure by subsetting to patients who take drugs for that cancer and apply sampling weights. Shares Inside is the median (over months and
years) sum of market shares of recommended regimens in Chu and DeVita (2019), where the market share for a regimen is calculated for each
month as the number of patient-days (within a particular month) assigned to that regimen divided by the total number of patient-days taking
drugs (for a particular cancer-month). Combo is the median (over months and years) sum of market shares of recommended combination
regimens in Chu and DeVita (2019). Regimens Total is the total number of recommended regimens we observe taken for that cancer, and
Combo is the number of combination recommended regimens we observe taken for that cancer. Price is the median (over regimens, time
windows, and years) total price, in dollars, of taking a regimen for that cancer for the N (= 30) day rolling window. The last row in each
panel gives a patient weighted mean (except for total patients) of each column.
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where pd1 is the (median) price of drug d in the first period it appears in our data (either the

first period of our data if the drug was already being marketed, or the price the first year it is

marketed), nd y(t) is the number of manufacturers that produce drug d in year y(t), and h1(r)
an indicator for the baseline bin of the revenue share of the regimen (calculated across all

cancers), where we use three bins in our baseline specification. Intuitively, an increase in the

value of the instrument suggests greater generic entry at t, which we expect to reduce the price

pr t of the regimen r. We interact with baseline regimen share bin to allow the effect of generic

entry to vary flexibly based on size (determined as baseline revenue share) of the regimen.

The second instrument is a baseline price-weighted average of the time relative to patent

expiry (measured in years) of drugs in the regimen interacted with indicator variables for the

baseline revenue share bin of the regimen. Time before patent expiry is coded as negative

values. More precisely, this instrument bD2
r t for regimen r and time t is given by

bD2
r t =

∑

d∈r pd1 gd t
∑

d∈r pd1

× h1(r),

where gd t is the time since generic entry time of drug d at time t.69 The idea for this instrument

is similar to the first.

To target the interactions between observable patient characteristics and regimen char-

acteristics, we match the covariance between (i) regimen prices and patient age (ii) regimen

combination status and patient age (iii) regimen biologic status and patient age. Micro moment

targets and patterns are discussed in Appendix C.

Price Setting: Given estimates of patient demand for cancer treatment regimens, we then

estimate the price setting model. We specify the marginal costs of biologic drug d at time t

as mcd t = mcd + ηd t , where mcd is the baseline cost of drug d and ηd t is a structural error

unobserved by the econometrician that represents changes in production costs over time (e.g.,

changes in input prices, shocks to manufacturing). We set mcd t = 0 and ηd t = 0 for all non-

biologic drugs.70 We also assume that there is one bargaining weight γ for all drugs. Therefore,

the parameters to be estimated are γ, ρ, and one baseline marginal cost per biologic drug.

This setting has the standard identification problem of bargaining models with unobserved

69We allow gd t to be negative before generic entry rather than bottom coding it at 0 for all values of t before
generic entry as this captures a trend in the price (often increasing) before generic entry. For example, suppose
drug d had generic entry in 2005. Then gd t is −1 in 2004, 0 in 2005, and 1 in 2006.

70An alternative assumption we could make is to assume mcd t is the lowest price we see in the data once the
drug has generic entry. For small molecules that never have generic entry during our sample period, we could
calculate the average markup for small molecules that have generic entry and set costs to match this average
markup.
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costs. For example, observing high prices could be either because costs are high and the man-

ufacturer bargaining weight is low, or because costs are low and the bargaining weight is high.

To separately identify the bargaining weight, costs, and consumer surplus weight, we follow

the outline of the identification argument in Lee et al. (2021). We construct instruments that

shift demand (and are uncorrelated with demand except through the effects on prices) and

use them as surplus shifters. Movement in prices in response to these shifters will be informa-

tive about the bargaining weight and costs. For example, suppose there is a positive shock to

demand for a particular drug. If the insurer has all the bargaining power, the negotiated drug

price will equal marginal cost, and there will not be a price change in response to the positive

demand shock. If instead the manufacturer has all the bargaining power, then we expect to

observe increases in price.

We construct drug demand shifts for a focal drug d by calculating how many manufacturers

are marketing other drugs used in regimens containing the focal drug. More precisely, we

construct this surplus shifter bS1
d t for drug d at time t as

bS1
d t =

∑

r∈Rc t :d∈r

∑

d ′∈r\{d} pd ′1nd ′ y(t)
∑

d ′∈r\{d} pd ′1
,

using the same data on baseline prices and number of generic entrants as in the demand instru-

ment construction. Intuitively, an increase in the instrument suggests generic entry in drugs

that are complementary to d, likely lowering their prices pd ′ t and hence increasing demand

and raising the surplus to be split between the manufacturer of d and the insurer.

We simplify estimation by optimizing only over the bargaining weight γ and consumer

surplus weight ρ. For biologics, at each possible value of γ and ρ, the vector of biologic

costs (mcd t) can be solved in closed form via the bargaining first-order conditions. Assuming

the error terms (ηd t) are mean independent of the baseline costs allows us to calculate the

baseline costs mcd for each drug d in closed form. Then, we can calculate moments of the

form E
�

ηd t B
S
d t

�

= 0 and estimate via GMM, while only optimizing over γ and ρ. Here, BS
d t

is a vector of instruments we use for drug d, where BS
d t = bS1

d t × 1d ′=d (i.e., interacted with an

indicator for each drug).

4.5 Estimation Results

Demand: Table 6 shows estimated parameters and summary statistics of own-price elastic-

ities of demand. Each column presents estimates for a different insurance segment: Medicare

(not dual-enrolled), Medicare dual-enrolled in Medicaid, and privately insured (Marketscan).

With regimen price instruments, we estimate a median own price elasticity of demand of -1.16
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for Medicare, -0.17 for Medicare dual-enrolled, and -2.49 for Marketscan. Previous papers

estimating Medicare patient demand for cancer drugs report own-price elasticities of demand

ranging between −.7 and −2.7 (Jung et al., 2017, Song et al., 2017),71 and our median elas-

ticity for Medicare patients falls within this range.

The ranking of these elasticities across insurance types is what we would expect based

on the price incidence of drugs on patients and the price sensitivity of insurers. Medicare

dual-enrolled patients face little to no cost-sharing, and we estimate that they are the most

price inelastic group. Medicare patients likely face the highest cost-sharing depending on sup-

plemental insurance but do not face prior authorization for drug usage. And while privately

insured patients in our sample typically hit the out-of-pocket maximum relatively quickly af-

ter diagnosis, prior authorization is often required, so that the relative elastic demand curve

reflects the price sensitivity of the insurer.

Similar to Gentzkow (2007), regimen fixed effects are informative about the complemen-

tarity of component drugs. We find that combination regimens often have higher fixed effects

than single-agent regimens of the components. These patterns are detailed in Appendix C.

The model’s implied micro moments are shown in Rows 15-18. The model fit is reasonable,

with the model implied micro moments having a similar magnitude to the targets. Appendix

C presents additional estimation results.

Price Setting: We estimate a bargaining weight of 0.69 and a consumer surplus weight

of 8.04. These parameter estimates are similar to those estimated in other health contexts.

Dafny et al. (2023) estimates a bargaining weight of .69 in a similar bargaining problem over

the prices of drugs for multiple sclerosis. Gowrisankaran et al. (2015) estimates a weight

on consumer surplus of 2.79 − 6.69, depending on the specification, in a similar bargaining

problem over hospital prices.72 For these parameters, the mean markup over marginal cost for

biologic drugs is .25, with a standard deviation (across drugs and years) of .44. While there is

limited information about the accounting manufacturing costs of biologic drugs, estimates of

the price declines after biosimilar entry range from 1-25%, suggesting our estimated markups

fall in a reasonable range.73 We present robustness checks of the estimated bargaining weight

and implied markups to different values of ρ in Appendix D.

71Jung et al. (2017) estimate price elasticities for cancer drugs covered under Medicare Part D. Song et al.
(2017) estimate price elasticities for colorectal combination therapies.

72Our estimate falls within the confidence interval of their estimate of 6.69 with standard error 5.53.
73Price et al. (2015) reports European manufacturers expending between $100 million to $250 million to re-

verse engineer biologic drugs, with prices dropping by about 25% after biosimilar entry. In the US, estimated
price declines range from 5-9% percentage points (Frank et al., 2022, Stern et al., 2021). Compared to the US,
competition resulting from biosimilar entry in Europe is much stronger. For comparison, after generic competitors
enter, small-molecules may see a decline in price of over 95% (Conrad and Lutter, 2019).
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Table 6: Demand Model Estimates

Medicare Medicare Dual Marketscan
(1) (2) (3)

αι -0.489 -0.311 -0.628
(0.012) (0.006) (0.047)

θ z
1 (age × price) 0.0867 0.2437 -0.0405

(0.02389) (0.01525) (6.0e-5)
θ z

2 (age × biologic) 0.0039 0.0078 0.0101
(0.00083) (0.00059) (0.00091)

θ z
3 (age × combo) 0.0014 0.0 -0.0182

(0.00072) (0.00028) (0.0002)
θ z

4 (r.c. × price) 0.0122 0.0497 0.0028
(0.00013) (0.0002) (0.00088)

Median Own Price Elasticity -1.156 -0.175 -2.492
Median Own Price Elasticity (no price ins) 0.068 -0.076 0.114
Median Own Price Elasticity Logit -1.1 -0.454 -5.402

Age Price Covariance -0.0361 -0.0375 0.0006
Age Biologic Covariance -0.0019 -0.0022 0.0008
Age Combo Covariance 0.0011 -0.0008 -0.0008

Regimen FE Yes Yes Yes
Year FE Yes Yes Yes

Notes: Table shows parameters and summary statistics of the demand system, estimated separately for each insur-
ance type in each column. Column (1) is traditional Medicare beneficiaries, Column (2) is traditional Medicare
patients who are dual-enrolled in Medicaid, and Column (3) is privately insured patients in Marketscan. The α
row shows the price sensitivity coefficient. Rows θ z

1 through θ z
4 are the patient heterogeneity coefficients. Rows

Median Own Price Elasticity through Median Own Price Elasticity Logit are own price elasticities of demand for
the baseline, no price instruments, and Logit specifications (using the same price instruments, but without de-
mographic heterogeneity), respectively. Rows Age Price Covariance through Age Combo Covariance show the
estimated micro moments. The final two rows indicate the inclusion of regimen and year fixed effects. Standard
errors are in parentheses.
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Table 7: Bargaining Model Estimates

Variable Mean Standard Error (Deviation)
Bargaining Weight γ 0.69 0.29
Consumer Surplus Weight ρ 8.04 4.41
Markup over Marginal Cost (Biologics) 0.25 0.44

Notes: Table shows parameter estimates and summary statistics of the bargaining model. The first row is the esti-
mated bargaining weight. The second row is the estimated weight on consumer surplus in the insurer’s objective
function. Standard errors for each of these parameters are given in the second column. The final row computes
the mean and standard deviation markup over marginal cost for biologic drugs.

5 Externalities from Combination Innovation

This section estimates externalities from successful drug regimen innovation, comparing

the distinctive externalities that arise from combination innovation to externalities present in

standard innovation settings. To calculate the externalities for regimens introduced in the data,

we augment the stylized model in Section 3.1 to incorporate additional details of our setting

and parameterize it using the demand and price setting models estimated in Section 4.

5.1 Measuring Externalities after Regimen Introduction

We start by outlining how we measure innovation externalities after regimen introduction,

extending the stylized model in Section 3.1 to incorporate fiscal externalities on the insurer.

Suppose firm f introduces new regimen r+ at time t. Since consumers do not pay the full

price of treatment, we must add the change in total costs of the insurer (∆TC) to the changes

in consumer surplus and total profits to recover the change in welfare at time t:74

∆W = CS
�

R∪ r+, p̃
�

−CS (R, p)
︸ ︷︷ ︸

∆CS

−
�

TC
�

R∪ r+, p̃
�

− TC (R, p)
�

︸ ︷︷ ︸

∆TC

+
∑

d∈D

πd

�

R∪ r+, p̃
�

−πd (R, p)
︸ ︷︷ ︸

∆πd

. (5.1)

As in the stylized model, p̃ is the observed price vector after introduction of the new regimen

r+, while p is the counterfactual price vector without r+. Firm f internalizes only the change

in its own profits after regimen introduction, so the net externality is now

Net ExternalityR+ =∆CS+∆TC+
∑

d 6∈ f

∆πd . (5.2)

74Throughout this section, we suppress the dependence of all values on t.
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This definition differs from (3.2) only because of the new insurer cost term.

The expressions above describe the externalities at the time of introduction t, but profit

externalities will persist throughout the exclusivity periods of the affected drugs, while the

consumer surplus and insurer cost externalities will persist until demand for the new regimens

falls to zero.75 Extending the calculation of these externalities requires assumptions on the

future path of innovation, which we address with the dynamic model in Section 6. Here we

focus instead on calculating each externality at the time of introduction, recognizing that this

likely understates the magnitude of the full dynamic externality because of gradual adoption

dynamics.

We observe 131 combination therapy introductions and 92 single-agent therapy introduc-

tions between 1999 and 2019.76 Table 8 summarizes these events. Of the combination therapy

introductions, 66 contain at least two branded drugs owned by different firms (at the time of

introduction). The remaining 65 either consist of at least two branded drugs owned by the

same firm or at most one branded drug (e.g., a branded drug in combination with a generic

drug).

A significant fraction—85%—of trials for the combinations that are introduced are spon-

sored by public innovators. These publicly-funded trials are likely to generate positive profit

externalities on firms (as we demonstrate below), but may overstate these externalities com-

pared to a counterfactual scenario where a firm conducts the trial itself (since the firm would

own at least one drug in the regimen). To separately identify public spillovers and likely ex-

ternalities arising from private innovation of combinations, we compute the effects of new

combination introductions using two methods. For method 1, we calculate the externalities

from new combination introductions from the perspective of each firm that would earn posi-

tive profits from the trial—that is, firms owning at least one branded drug in the combination.

This approach allows us to leverage the publicly funded trials we observe to estimate external-

ities over a broad set of combinations. For method 2, we compare these results with estimates

of externalities based on the actual innovator who conducted each trial in our data, analyz-

ing publicly and privately funded trials separately. The former set is informative about public

spillovers, while the latter set show realized externalities for the selected set of combinations

that firms trial.

For each approach, we compute each term in the net externality definition (5.2) by intro-

75There will also be effects on generic drugs, but significantly smaller given that prices for generic drugs are
substantially lower than branded drugs.

76There are more entry events that occur according to guidelines such as Chu and DeVita (2019), but not all
regimens included the treatment guidelines are taken in the Medicare or Marketscan data.
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duction event. As in the stylized model, we decompose the net profit externality component

into business stealing, market expansion, and price adjustments. We use the estimated demand

and bargaining models to simulate these changes the year after entry of a particular regimen.

We hold all other primitives constant.

As discussed in Section 3.1, several factors prevent us from calculating the regimen in-

troduction externalities directly from the data. First, measuring the change in consumer sur-

plus requires an estimated demand model. Measuring profit changes also requires marginal

costs, which we estimate from the bargaining model. Second, there are often multiple regi-

men introductions in each year for a given cancer, which prevents us from observing the post-

introduction prices that would prevail upon introduction of a single regimen. Additionally,

idiosyncratic events including patent expiry or generic entry also affect drug prices at each

time, again contaminating our observation of post-introduction prices. We use the bargaining

model to compute post-introduction prices holding all other primitives constant.77

Finally, it is important to note that our estimates of the externalities are computed for

the set of regimens that were ultimately introduced, which likely implies selection on being

privately worth trialing for the innovator (whether public or private), among other unobserved

factors.

5.2 Estimates of Externalities after Regimen Introduction

Table 8 summarizes the externalities after single-drug and combination introduction, com-

puted from the perspective of each firm that would have earned positive profits from that new

regimen (firms with at least one branded drug in the combination), i.e., using method 1. We

show effects separately for three types of regimens: single drugs, combinations with at least

two different firms’ branded drugs, and all other combinations.

The introduction of single drugs, for which there is no market expansion effect, results

in large business stealing effects on other drugs (not owned by the trial sponsor) on average:

negative $40 million per year per new drug. For combinations with at least two firms’ branded

drugs, market expansion dominates business stealing on average, with the sum of these effects

averaging $27 million per year per combination. These externalities are significant compared

to the own-profit effect of introducing the combination, which averages $33 million per year.

Extrapolated over the average patent length of affected drugs implies positive externalities

upwards of $200 million over the life-cycle of each new combination therapy. Figure 5 shows

77We compare the model predicted market shares and realized market shares in the data after innovation events
in Appendix E. These shares are highly correlated, but we use the model estimates as our baseline specification
given the concerns discussed in this paragraph.
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Table 8: Average One-Year Externalities by Regimen Type

Regimen Type

Single Drug ≥ 2 Firms’ Branded Other Combinations

(1) (2) (3)

# Events 92 66 65

Fraction Firm Trials 0.15 0.15

Business Stealing + Market Expansion ($M) -40.2 27.01 -16.77

Market Expansion ($M) 0.0 52.46 0.0

Business Stealing ($M) -40.2 -12.57 -16.77

Price Adjustment ($M) -1.9 -0.48 -1.12

∆ CS ($M) 92.77 31.02 35.73

∆ TC ($M) 16.22 23.7 19.79

Net Externality ($M) 6.04 34.65 3.13

Fraction Positive Net Externality 0.43 0.9 0.6

Fraction Positive BS + CS - TC 0.43 0.25 0.6

Firm Profit (Innovator) ($M) 58.18 32.58 26.83

Notes: Table shows summary statistics and estimates of externalities separately for single drugs (1), combinations
with at least 2 firms’ branded drugs at the time of introduction (2) and all other combination (3). Combinations
of this third type include: combinations with at least two branded drugs owned by the same firm, or combinations
that consist of at most one branded drug. Externalities and own profit effects are computed separately for each
event and from the perspective of each firm that would have earned positive profits from the new regimen (i.e.,
firms with at least one branded drug in the regimen). All effects are calculated one year after the introduction
of the new treatment. # Events is the number of introduction events. Fraction Firm Trials is the fraction of
trials for that regimen type that were run by firms (rather than public innovators). Business Stealing + Market
Expansion is the mean sum (in millions of dollars) of the business stealing and market expansion terms in the
drug profit change decomposition from (3.1), summed over all drugs not owned by the innovating firm. Market
Expansion and Business Stealing show these two terms separately. Price Adjustment is the mean change in drug
profits due to the price adjustment term from (3.1), summed over all drugs not owned by the innovating firm.
∆ CS is the mean change in consumer surplus. ∆ TC is the mean change in insurer costs. Net Externality is the
mean net externality (summing consumer surplus, insurer costs, and net profit externality). Fraction Positive Net
Externality is the fraction of events with positive net externalities. Fraction Positive BS + CS - TC is the fraction
of events with the sum of the business stealing externality, consumer surplus spillover, and insurer cost spillover
being positive. Firm Profit (Innovator) is the mean profit change of the drugs owned by the innovating firm.

the distribution of the sum of business stealing and market expansion by regimen entry event,

where combinations with at least two firms’ branded drugs are shown in red and single-drugs

are shown in gray. This sum is positive for approximately 80% of combination entry events,

indicating that the market expansion effect dominates the business stealing effect.

All types of new regimens also have positive spillovers on consumers and negative spillovers

on insurers, and the price adjustment terms in the profit change decomposition are relatively

small in magnitude. In sum, the net externality is positive on average for each type of new
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Figure 5: Business Stealing + Market Expansion Externalities

Notes: Figure shows the distribution of the sum of business stealing and market expansion externalities over
introduction events. Combination entry events with at least two firms’ branded drugs are in red and single-agent
entry events are in gray.

regimen, but largest for combinations with at least two firms’ branded drugs, at $35 million

per year per new combination.

We can also compute the externalities from the perspective of the innovator who ran the

trial in the data (i.e., using method 2). Publicly-funded combination trials have large positive

profit spillovers on firms on average, shown in Figure 6. Privately funded trials for combina-

tions with at least two branded drugs owned by different firms have a mean sum of business

stealing and market expansion externalities of $11 million per year per combination, as anno-

tated on Figure 5.

Together, these results suggest that firms are often under-incentivized to conduct trials

for combination therapies because of large positive externalities on other firms and patients.

Having quantified the externalities associated with combination innovation, we now derive

the implications of these externalities for innovation decisions by building a dynamic model of

combination innovation decisions. We use this model to explore potential policies to support

combination innovation.
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Figure 6: Public Innovation Profit Spillovers

Notes: Figure shows the distribution of the net profit externality (i.e., spillovers on firms) for combinations trialed
by public innovators. Combinations with one-branded drug are in red and combinations with two-branded drugs
are in gray.

6 Dynamic Model of Combination Innovation

The results in Section 5 indicate that significant externalities may arise from combina-

tion innovation. Analyzing policies to correct these externalities requires imposing additional

structure on innovation decisions. In this section, we develop and estimate a dynamic model

of combination innovation. We use this model to explore how externalities influence the path

of innovation: market expansion externalities create incentives for firms to free ride off others’

combination innovations, and innovation by public innovators may similarly crowd out private

combination innovation. We first use the model to recover primitives of the innovation process,

including the incentives for free-riding and public crowd-out. Then, in Section 7, we use the

model to explore potential policies to support combination innovation.

6.1 Setup

We model the innovation decision for each combination regimen r as a dynamic discrete-

choice game. This game involves a set of innovators I : firms with at least one patented drug in

the regimen, and a public innovator.78 Innovators can choose to run a clinical trial for regimen

78Therefore, I is the union of the set of firms F that have at least one patented drug in the regimen and a public
innovator.
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r to learn its quality. We refer to this regimen r as the focal regimen of its game. Time is discrete

(yearly) with a finite horizon, which allows us to capture the fundamental nonstationarity of

the setting arising from individual drug introduction and patent expiry.

At year t, the state variables relevant for the decision to trial focal regimen r are sum-

marized by the vector sr t ∈ Sr . This state includes information about whether other potential

regimens have been trialed and, if so, their revealed qualities. This state space suffers from the

curse of dimensionality, and we discuss simplifications to facilitate estimation below.

In each year t until focal regimen r has been trialed, each innovator i ∈ I takes action

ari t: trial the focal regimen, ari t = 1, or not, ari t = 0. Each action has some i.i.d. (across firms

and time) private cost shock εri t,a, drawn from a Type 1 extreme value distribution, scaled by

parameter θ ε. Trialing focal regimen r by innovator i at time t has cost κri t . We assume this

decision represents the cumulative efforts to bring the combination to market, and we abstract

away from any choice of effort (e.g., trial size) conditional on trialing.79

A trial is successful with probabilityχ, where success means that the regimen is of sufficient

quality to be taken by patients (i.e., appears in treatment guidelines such as Chu and DeVita,

2019). If trialed successfully, regimen r has quality ξr ∼ Gc(·), where c is the cancer the

regimen is being considered for. The distribution Gc is estimated from our demand model in

Section 4.

Each innovator maximizes the discounted sum of flow profits net of trial costs. For a firm,

flow profits in state sr t are defined to be its profits from regimens that have been successfully

trialed. We model the flow profits of the public innovator as the sum of consumer surplus and

weighted firm profits:

πri t(sr t) = CS(sr t) +λ
∑

i′ 6= public

πri′ t(sr t),

where the weight on firm profits λ ∈ [0,1] will be estimated.

Equilibrium

For each focal regimen game, we solve for a type-symmetric pure strategy Markov Perfect

Equilibrium (MPE), as is common in the literature following Maskin and Tirole (1988) and

Ericson and Pakes (1995). Each innovator i’s Markov strategy σi at time t is a mapping from

the current state vector sr t ∈ Sr and vector of private shocks ε into a trialing decision: σi :

79We do not model different phases of trials. Combinations are involved in 1.3 different trials (phases) on
average. We take the trialing decision for a particular regimen to be the first trial for that regimen in the data.
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Sr × R2 → ai. The profile of Markov strategies is given by the vector σ = (σi)i∈I . As we

discretize the state space (discussed below), an equilibrium of the game exists (Doraszelski

and Satterthwaite, 2010). However, we cannot guarantee uniqueness since multiple innovators

could trial regimens in a particular period.

Note that equilibrium strategies are defined for the focal regimen of each game, and we

take the trialing decisions of all other regimens as exogenous. This assumption imposes sep-

arability across the different focal regimen games: the state of the focal regimen evolves as

a function of equilibrium strategies, while the states of other regimens evolve exogenously.

Separability is critical to making the problem computationally tractable, yet preserves the key

economic forces our dynamic combination innovation model seeks to capture: externalities on

drug owners and patients, the incentive to free ride off others’ combination innovation, and

public innovation crowd-out. We discuss this assumption and its implications for estimation in

further detail in Section 6.2.

Timing

For focal regimen r, the game starts when each component drug of the regimen has been

trialed in at least one other cancer clinical trial, and ends 5 years past the last patent expiry

event.80 We assume individual drug arrival and patent expiry is exogenous and deterministic.

Let t r1 denote the first year of the game for focal regimen r and denote the last year t rT . The

timing of each year t of the game for focal regimen r is as follows:

(i) The state sr t ∈ Sr is observed.

(ii) Equilibrium drug prices are determined via the static price setting game (as estimated in

Section 4), and each innovator i realizes variable surplus πri t(sr t).

(iii) Each innovator i observes private cost shocks εri t,a and innovators simultaneously decide

whether to trial the regimen or not following strategy profile σ. If an innovator i trials

the focal regimen, she pays cost κri t .

(iv) The state evolves to sr t+1 ∈ Sr on the basis of the outcome of the focal regimen trial (if

applicable) and the exogenous trialing decisions and outcomes of other regimens.
80The regimens trialed in the data are typically trialed within this time horizon. As our demand data end in 2019,

we extrapolate the profit functions we estimate in 2019 forward to all remaining years of the game. Alternative
ways of extrapolating could include estimating a constant profit decay or growth factor in years before 2019 and
applying in future years.
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Dynamic Game

The ex-ante choice-specific value function of not trialing focal regimen r by innovator i at

time t < t rT at state sr t is given by the following Bellman equation:

vri t(sr t , 0) = πri t(sr t) + βEsr t+1|σ

�

Vri t+1 (sr t+1) |sr t , 0
�

. (6.1)

The first term is the flow surplus for innovator i. When i is a firm, it only considers its own

profits, ignoring the potential externalities on firms (business stealing and market expansion)

and patients. The second term is the discounted expected future value Vri t+1. This expectation

is calculated over potential states in the next period, capturing two key elements: (i) whether

another innovator i′ trials the focal regimen (following strategy σi′) and that trial’s outcome

(if applicable) and (ii) the exogenous trialing decisions and outcomes of other regimens. The

possibility that another innovator may trial the focal regimen creates the incentive to free ride

off that innovator’s trial. Similarly, trials run by the public innovator may crowd out trials run

by a firm.

The ex-ante choice-specific value function of trialing focal regimen r by innovator i at time

t < t rT at state sr t is

vri t(sr t , 1) = πri t(sr t)− κri t × 1r not trialed by t + βEsr t+1|σ

�

Vri t+1 (sr t+1) |sr t , 1
�

. (6.2)

The first term is flow surplus minus trial costs, where the costs are paid only if the focal regimen

has not been trialed. We model trialing as an absorbing state so that, after trialing, innovators

remain in a state in which the focal regimen has been trialed. The second term is the discounted

expected future value, conditional on the focal regimen having been trialed. The expectation

is again calculated over potential states in the next period, capturing: (i) the outcome of focal

regimen trial (if applicable) and (ii) the exogenous trialing decisions and outcomes of other

regimens.

At the final year of the game t = t rT , innovators do not trial and simply receive flow

surplus from the current state.

Conditional Choice Probabilities

Let Prθ (ari t |sri t) be the conditional choice probability of innovator i taking action ari t ∈
{0,1} in the focal regimen r game at time t, conditional on parameters θ and state sr t . The

51



conditional choice probability of trialing is then

Prθ (1|sr t) =
exp

�

vri t (sr t ,1)
θ ε

�

exp
�

vri t (sr t ,0)
θ ε

�

+ exp
�

vri t (sr t ,1)
θ ε

� . (6.3)

State Space

The state space summarizes variables relevant to the profitability of trialing the focal regi-

men. Without further restrictions, it is infinite dimensional: predicting profits requires knowing

the states of all other regimens (i.e., indicators of whether regimens have been trialed and re-

sulting qualities). This state space suffers from the curse of dimensionality even if we discretize

the quality distribution, so we make an additional simplification to reduce the size of the state

space.

We assume each innovator tracks the trialing status (or outcomes) of a subset of potential

combination regimens and a “fringe” regimen. The fringe regimen represents trialing outcomes

of all other regimens and has a relatively low probability of success. This assumption is similar

to those made in partially oblivious equilibrium (Weintraub et al., 2008, Benkard et al., 2015)

or moment-based Markov equilibrium (Ifrach and Weintraub, 2016). We denote by Rr the set

of regimens included in the state for focal regimen r, which we refer to as tracked regimens.

For focal regimen r being trialed for cancer c, we let the set of tracked regimens include the

focal regimen r, the regimens that were ultimately successfully trialed for that cancer c, and

a fringe regimen with a relatively low probability that summarizes all remaining regimens.

The expectations in (6.1) and (6.2) integrate over the exogenous evolution of these tracked

regimens.

We discretize the regimen quality distribution Gc to have Nξ points. The state is summa-

rized by the quality levels of the tracked regimens, where the quality level is either not trialed,

trialed and failed, or trialed and successful with some quality level. The state space Sr for the

focal regimen r game is therefore given by

Sr =
¦

not trialed, trialed and failed, trialed and quality ξ1, . . . , trialed and quality ξNξ

©|Rr |
.

(6.4)

6.2 Estimation and Identification

The parameters in the model are the innovation fixed cost κri t , scale parameter θ ε, profit

weight λ, discount rate β , and success rate χ. We estimate a common fixed cost κ, scale
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parameter θ ε, and profit weight λ via a full-solution method using maximum likelihood. We

set a yearly discount rate of .9, and we set the success rate to be the rate observed in the data

for each cancer.

The likelihood of a candidate parameter vector θ = (κ,θ ε,λ) is computed as follows. For

each focal regimen r ∈ R, we approximate the solution to the game at parameters θ (details

of this approximation procedure are given in Section 6.3), obtaining ex-ante choice specific

value functions (6.1) and (6.2). These functions are used to compute the conditional choice

probabilities Prθ (ari t |sri t) as defined in (6.3). As is common in the literature on dynamic

games, we fix competitor conditional choice probabilities at first-stage estimated values (via

multinomial logit) in estimation.81 This assumption is made to avoid issues with multiple

equilibria when iterating over conditional choice probability profiles (Aguirregabiria and Mira,

2010; Sweeting, 2013; Bodéré, 2023). Let {(âri t , ŝri t)}r∈R,i∈I,t∈T denote the set of observations

(over regimens, innovators, and time) of action-state tuples in data. Define the log-likelihood

function as

∑

r∈R,i∈I,t∈T

1
|R| |I| |T |

log
�

Prθ (âri t |ŝri t)
�

. (6.5)

We find the θ that maximizes (6.5).

The estimates of profits and consumer surplus from the introduction of a new regimen

(from Sections 4 and 5), combined with observed trialing decisions, are key inputs into iden-

tifying the dynamic parameters. For example, conditional on expected profits, a high fixed

cost of innovation will lower the CCP of trialing. Similarly, a high weight on aggregate profits

in the public innovator’s objective will increase the public innovator’s CCP of trialing certain

types of regimens (e.g., those including patented drugs) relative to others (e.g., those with

all generic drugs). Finally, the scale parameter is identified since revenues are taken as given

when estimating the dynamic model.

We make additional assumptions to ease the computational burden of estimation. First,

we estimate the model for focal regimens for colorectal cancer. Colorectal cancer is not unique

compared to the other cancers in our sample, but focusing a single cancer alleviates signifi-

cant computational challenges.82 Second, we focus on regimens that were trialed in the data

rather than considering the full set of potential combinations given a set of available drugs. By

focusing on regimens that were ultimately trialed in the data, the model is most useful for un-

derstanding the timing of trialing and which innovator runs the trial rather than the extensive

81The specification of first-stage CCPs and results are shown in Appendix F.
82An extension to all cancers in our data will be included in future drafts.
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margin of which regimens are trialed. Extending the model to consider the extensive margin

requires estimating the (unobserved) quality distribution of this larger risk set of potential reg-

imens. Such an extension is possible with more data about the potential quality of regimens

as a function of characteristics such as mechanism of action, known interactions, etc., but is

beyond the scope of our analysis.83

Within each focal regimen, taking the trialing decisions of other regimens as exogenous

is critical to the computational tractability of the game. Given the separability across focal

regimens, we can parallelize across focal regimens when approximating the game solution.

This assumption is also motivated by institutional details: decisions in large pharmaceutical

companies are likely decentralized, and a model with strategic interactions within each focal

regimen, taking the evolution of other regimens as given, approximates this structure. This

is especially true of public innovation decisions, which are made across many hundreds of

different publicly-funded research organizations.

We compare alternative ways of estimating the model in Appendix F. The model has the

finite dependence property (Arcidiacono and Miller, 2019), and can be estimated through a

two-step estimation approach (similar to Scott, 2014). The first step requires non-parametric

estimates of the conditional choice probabilities, while the second estimates dynamic param-

eters using Euler perturbations. While this approach is computationally less demanding than

the full-solution method, it is very demanding of data. We explore it in Appendix F, but prefer

our current approach given the noise with which the first-stage conditional choice probabilities

are estimated in the two-step approach.

6.3 Solution Procedure

For each candidate parameter vector in estimation (and counterfactuals), we apply sieve

value function approximation (Arcidiacono et al., 2013), extended to a game rather than single-

agent problem, to solve for approximate value and policy functions. This method approximates

the integrated (i.e., expected) value function with a non-parametric sieve function of state

variables. Applying approximation methods is required to make the problem computationally

tractable: despite the assumptions made regarding the number of regimens to track in the state

space and the discretized quality distribution, the dimension of the state space is prohibitively

large to solve the model exactly via backwards induction.84

83In future work, we can make progress on this extension by focusing on two-drug combinations and using the
results of trials in the NCI ALMANAC to create a risk set of potential combinations based on having promising
results in the laboratory tests.

84For example, suppose there are 8 points in the quality distribution in addition to the states of not trialed and
trialed and failed. With 10 tracked regimens (including) the focal regimen, there are 10 billion states.
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For notational convenience, define the flow surplus net of trial costs as

Πri t(sr t , a) = πri t(sr t)− a×κri t × 1r not trialed by t .

Let n be the dimension of the sieve. The approximation v̂ri t,n to the ex-ante value function

for the focal regimen r game for innovator i at time t satisfies

v̂ri t,n(sr t) = θ
ε ln

 

∑

ari t∈{0,1}

exp
�

1
θ ε

�

Πri t(sr t , ari t) + βE
�

v̂ri t+1,n(sr t+1)|sr t , ari t

	�

�

!

+ γ̃,

≈ E
§

max
ari t∈{0,1}

{vri t(sr t , ari t) + θ
εεri t(ari t)}

ª

,

where the sieve v̂ri t,n(sr t) is

v̂ri t,n(sr t) =ωri t,1w1(sr t) + . . .+ωri t,nwn(sr t) =ωri t ·Wn(sr t),

and γ̃ is the Euler-Mascheroni Constant.

The vector of coefficients ωri t characterizes the sieve, along with the set of functions W .
These functions are all linear terms of the state space, all quadratic interactions, all cubic
interactions, etc., until the dimension of the sieve n is reached.85 We can recover the coefficients
of the sieve function via backwards recursion at each t by solving the following program:

ω̂ri t = argmin
ωri t

∑

sr t∈Ŝr

�

ωri t ·Wn(sr t)

− θ ε ln

 

∑

ari t∈{0,1}

exp
�

1
θ ε
(Πri t(sr t , ari t) + βω̂ri t+1E {Wn(sr t+1)|sr t , ari t})

�

!

− γ̃
�2

.

The sieve function can be used to derive the ex-ante choice value functions (6.1) and (6.2),

which in turn give the CCPs in (6.3). When computing counterfactuals, we iterate over CCP

profiles until they are consistent.

The key assumption for computational tractability is that we use a subset of states Ŝr ⊆ Sr

for this approximation. This choice of approximation states Ŝr is crucial to the accuracy of the

approximation. In order to increase accuracy of the approximation around the states in the

data and states likely reached in counterfactual simulations, we generate the approximation

states as follows, similar to Sweeting (2013). For each state observed in the data, we choose a

85Additional details about the exact construction of the sieve function are given in Appendix F.
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random subset of tracked regimens (including the focal regimen) and change those regimens’

quality levels to random values (using weights based on the likelihood of those quality levels

being realized). We repeat until the desired number of approximation states is reached. In our

baseline specification, we set
�

�Ŝr

�

�= 15,000 and n= 1, 000.

We present results about approximation error from Monte Carlo simulations of the model

with a small number of tracked regimens in the state space and quality levels in Appendix F.

We can solve this model exactly via backwards induction and compute approximation error

for various choices of the number of approximation states and sieve specification. The approx-

imation error is generally small, even for sets of approximation states with relatively small

cardinality compared to the dimension of the full state space.

6.4 Parameter Estimates

Table 9 presents estimates of the dynamic parameters. We assume a yearly discount rate

of .9, and we observe a 5% success rate for colorectal combination therapies in the data. We

estimate trial costs of $28 million, a scale parameter θ ε of 10.91, and a weight on aggregate

profits in the public innovator’s objective of .25.

Our cost estimates are similar to expected accounting costs of oncology trials. Sertkaya et

al. (2016) estimates that oncology trial costs average $4.5 million in Phase I, $11.2 million in

Phase II, and $22.1 million in Phase III, totaling $37.8 million.86 While similar, our estimate of

$28 million may differ from the sum of these phases for two key reasons. First, as discussed in

Section 2.1, successful combinations often do not go through all three phases, often combining

Phase I/II or Phase II/III if the component drugs have already been shown to be safe. Our model

does not distinguish between stages and instead assumes the innovation costs are the total cost

of bringing combinations to market across all phases. Many of the combinations in our data fail

after one or two phases, reducing the expected trialing costs. Second, the costs recovered by

the model are economic costs rather than accounting costs, so additionally capture the possible

opportunity costs associated with not trialing other regimens.

Model Fit: We compare model predicted trial times to the data in Appendix F. The model

fit is reasonable with high correlation between model predicted and actual trial times, though

our model predicts trials occurring approximately 1.5 years earlier than the data on average.

86Additional external estimates of the accounting costs of a single stage of an oncology trial are approximately
$100,000 per patient (Sertkaya et al., 2014). In our data, combination trials enroll an average of 116 patients
(across all phases), implying an average per-phase cost of $12 million. This estimate is similar to the Phase 2 trial
costs cited above.
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Table 9: Dynamic Model Parameter Estimates

Parameter Method Estimate

Cost κ (million $) Estimated – Maximum Likelihood 28.0

(13.19)

Scale θ ε Estimated – Maximum Likelihood 10.91

(0.28)

Profit Weight λ Estimated – Maximum Likelihood 0.25

(0.23)

Discount Rate β External Estimate 0.9

Success Rate χ Estimated – Mean Success 0.05

Notes: Table presents estimates of the dynamic parameters. Each row is a parameter. Column 2 shows the method
used to estimate the parameter. Column 3 contains parameter estimates. Standard errors are in parentheses,
calculated from bootstrap samples of focal regimens. Note that these standard errors currently only capture
variation in estimates of the dynamic game and not the demand or bargaining models.

7 Designing Policy to Support Combination Innovation

In this section, we use the dynamic model to design cost-effective policies to support com-

bination innovation. The policies we consider include research subsidies, varying the amount

of public innovation, and varying the direction of public innovation.

7.1 Counterfactual Policies

The large set of externalities that arise from combination innovation suggests that private

innovation of new combinations is unlikely to yield a socially efficient outcome, perhaps justi-

fying policy intervention. In principle, a social planner could ensure efficient innovation deci-

sions by giving each firm f a subsidy equal to the net externality after it trials a new regimen

r+. But directly implementing this subsidy is impractical, because it requires correct forecasts

of the changes in demand, prices, and profits after the introduction of each possible regimen by

each firm. Moreover, such subsidies would need to account for the dynamic effects on patients

and firms, which also depend on a correct forecast of the future path of innovation. Given

these difficulties, we study a more limited collection of policies that can improve welfare and

are simple to implement: a regimen- and firm-independent research subsidy for combination

therapy trials and changes in the amount and direction of public innovation.

We note that crafting these policies to balance public and private innovation is particularly

important given the large role of public innovation in pharmaceutical markets. Our analysis

suggests an important role for public researchers to study combination therapies neglected

by firms, particularly those involving only generic drugs. But policies that expand the role of

public innovation can also crowd out private innovation, which may be inefficient to the extent
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that public innovation is more costly (i.e., through the marginal cost of public funds).

We compute counterfactuals by solving the model at the estimated parameters and coun-

terfactual policies and forward simulating the model to predict trial times (and which innovator

trials the regimen), described in more detail in Appendix F. To implement a research subsidy

we reduce the trial cost κ by some fixed amount. To vary the amount of public innovation,

we set the CCPs of public innovation at either lower or higher (exogenous) levels than we

estimate. To vary the direction of public innovation, we set the CCPs of public innovation of

certain regimens at higher or lower levels than we estimate.

7.2 Results

Table 10 summarizes the effects of counterfactual innovation policies for funding colorectal

cancer combination trials.87 For each counterfactual policy, we compute the total cost to the

government of implementing the policy, the change in consumer surplus, the change in firm

profits, and the net change in welfare. Figure 7 compares the policy cost to the government

with the gains in consumer surplus and firm profits for a subset of the policies we consider.

Research Subsidy: The first set of policies we consider is a constant research subsidy to

firms for running the trial at a percentage of the estimated trial cost. The government cost of

implementing this subsidy consists of two components. First, offering a subsidy may increase

the probability of private trialing and result in fewer publicly funded trials relative to baseline.

Second, the government must pay a research subsidy on all privately run trials irrespective

of success. A 20% subsidy increases total welfare by approximately $442 million ($642 per

patient-year), with larger increases in firm profits compared to consumer surplus because of

the large transfer that occurs through the subsidy.

Amount of Public Innovation: The next policy we consider varies the probability of pub-

lic trialing by setting the public innovator’s CCPs as exogenous and at higher levels than the

estimated levels. For example, the NIH would reduce the threshold for approving grants by

some fixed amount. Increasing the probability of the public innovator has two key effects:

First, the public innovator is more likely to trial, and therefore more likely to trial earlier. Sec-

ond, other innovators may be less likely to trial because of the incentive to free-ride and public

innovation crowd-out. Increasing public CCPs by 4 percentage points (uniformly across all

states) increases total welfare by approximately $424 million ($616 per patient-year). We use

4 percentage points as it gives a similar policy implementation cost to the research subsidy, and

we show results for other policies in Table 10. On average, a firm’s CCP of trialing decreases

by approximately 18% relative to baseline, implying positive but limited public crowd-out.

87In future drafts, we will include extensions to all cancers in our sample.
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Direction of Public Innovation: The final set of policies we consider varies the direc-

tion of public innovation. As public innovation may crowd out private innovation, it may be

possible to redirect public innovation towards combinations that firms are particularly under-

incentivzed to trial and increase trialing speed while keeping the public budget fixed. We

implement this type of directional policy similar to the previous counterfactual, where we set

the public innovator’s CCPs as exogenous and at either or lower levels than what we estimate,

depending on characteristics of the combination.

First, we construct a policy that redirects public innovation towards regimens with at least

one generic drug. This type of regimen may feature higher consumer surplus spillovers because

of the lower drug prices, and firms may be particularly underincentivzed to trial a regimen

when a sufficiently high fraction of component drugs are generic. We reduce public CCPs by a

fixed amount for all regimens that do not involve any generic drugs, while we increase public

CCPs for regimens that do. It is important to note that in this counterfactual we do not compute

the optimal policy for redirecting public innovation based on this regimen characteristic, but

rather choose the magnitude of the change in CCPs to deliver similar welfare gains as the

previous policies. To obtain a budget neutral policy, we reduce public CCPs by approximately 1

percentage point for regimens that do not involve generic drugs and increase by approximately

5 percentage points for those that do. Despite being budget neutral, this policy increases total

welfare by $367 million ($533 per patient-year).

The second policy we consider similarly redirects public innovation towards regimens with

at least two on-patent drugs owned by different firms. These regimens are likely to have posi-

tive market expansion externalities, resulting in reduced firm incentives to trial them relative to

what is socially optimal. We decrease public CCPs by approximately 4 percentage points for reg-

imens that have at most one firm’s patented drug and increase by approximately 3 percentage

points for regimens with at least two firms’ patented drugs. This policy is again approximately

budget neutral yet increases total welfare by $337 million ($490 per patient-year).

These policies demonstrate that it is possible to obtain similar welfare gains to untargeted

subsidies or increases in public innovation at much lower costs by taking advantage the features

of the setting that reduce firm incentives to trial certain regimens: missing property rights and

market expansion externalities.

8 Conclusion

Market expansion externalities, missing property rights for combinations, and the incen-

tive to free ride off others’ combination innovation are forces that tend to reduce the private
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Figure 7: Policy Cost and Welfare Gains

Notes: Figures shows estimates of the government policy cost and change in consumer surplus and profits for
counterfactual innovation policies.

value of combination innovation below its social value.

This paper presents descriptive evidence consistent with underinvestment in combinations

because of these forces, develops an empirical framework to quantify combination innovation

externalities, and evaluates alternative innovation funding policies in the context of cancer

drug combination therapies. Market expansion externalities often dominate business stealing,

showing that there is often underinvestment in combination therapies. Redirecting public in-

novation towards combinations that firms are particularly underincentized to trial—those with

the potential for large consumer surplus spillovers, such as combinations of generic drugs, and

market expansion externalities—minimizes free-riding and public crowd-out and provides a

set of relatively simple innovation funding policies that increase total welfare yet are budget

neutral.

This analysis focuses on particular aspects of combination innovation, leaving other im-

portant features for future research. Mergers and acquisitions of drugs in the early stages of

development may play a key role in the shaping the risk set of potential combinations and the

amount and direction of combination innovation. And underinvestment in combination thera-

pies suggests potential inefficiencies in the amount, and direction, of innovation in new drugs

themselves. Technology (e.g., artificial intelligence) that helps screen potential combinations

for predicted success probabilities and externalities could be an important tool in correcting
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Table 10: Policy Counterfactual Summary

Counterfactual Policy Cost (Govt) ∆ CS ∆ Profits ∆ Welfare
Millions $ Millions $ Millions $ Millions $

Research Subsidy 20% 307 255 495 443

More Public + 1 pp 116 5 120 9
More Public + 2 pp 155 124 292 261
More Public + 3 pp 337 151 507 321
More Public + 4 pp 416 200 640 424
More Public + 5 pp 571 241 837 507

Redirect Generic 0 160 207 367
Redirect ≥ 2 Firms’ Patented Drugs 0 120 218 338

Notes: Table shows estimates of the government policy cost and change in consumer surplus and profits for
counterfactual innovation policies. Column 1 is the cost to the government of implementing the policy. Column
2 is the change in consumer surplus. Column 3 is the change in profits. Column 4 is the change in total welfare
(summing the government policy cost and change in consumer surplus and profits). Values are in millions of
dollars, rounded to the nearest million.

the amount and direction of innovation.

Moving beyond pharmaceuticals, the efficiency of combination innovation will depend

critically on the nature of product market competition, the possibility of joint ventures, and

the particular property rights institutions. The empirical framework in this paper can be ex-

tended to match alternative institutions and provide evidence of how these features shape the

efficiency of combination innovation.
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A Data Construction Details

A.1 Cancer Drugs

We use three main sources of data about cancer drugs and characteristics.

GlobalData: We access GlobalData’s Drug Database via MIT’s institutional subscription.88

This database is similar to other databases used in papers about pharmaceutical demand and

supply, such as Pharmaprojects and Cortellis. We harmonize firm names across different drugs

that they own, and we collapse ownership to the parent level (i.e., assign all drugs owned by

subsidiaries to their parent company).

Drugs@FDA: We supplement the GlobalData drug database with marketing and other

regulatory information from Drugs@FDA.89 We count the number of generic competitors for

each drug in a year as the total number of Abbreviated New Drug Application’s (ANDA) filed

cumulatively for that drug up to that year. More than one firm can be listed on each ANDA,

but each is typically producing a different dosage.

SEER CanMED: We obtain HCPCS codes for marketed drugs from the CanMED: HCPCS

database.90 HCPCS codes often change overtime, so finding historical HCPCS codes is impor-

tant to using historical Medicare and Marketscan data.

A.2 Clinical Trials

We obtain all metadata from all clinical trails on ClinicalTrials.gov.91

A.2.1 Identifying Cancer Clinical Trials

We use the list of oncology Medical Subject Headings (MeSH) terms and free text keywords

in Califf et al. (2012) to subset to oncology clinical trials. We define an oncology clinical trial

to be a trial with at least one MeSH term or condition that is in the list from Califf et al. (2012).

We then manually make a crosswalk between the list of MeSH terms and cancer types in Chu

and DeVita, 2019. The mapping is many-to-one (one MeSH term may map to many cancer

types in Chu and DeVita (2019)), and each clinical trial may have more than one MeSH term.

88The database is described here: https://www.globaldata.com/marketplace/pharmaceuticals/pipeline-mark
eted-drugs/. We received an extract of all drugs classified as oncology drugs on October 31, 2023.

89The data is available here: https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files.
We downloaded the full database on October 3, 2023.

90The data is available here: https://seer.cancer.gov/oncologytoolbox/canmed/hcpcs/. We downloaded the
full database on October 4, 2023.

91The data is available here: https://classic.clinicaltrials.gov/api/gui/ref/download_all. Our extract is from
January 12, 2023.
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Appendix Table A.1 summarizes the number of trials we observe for each cancer type in Chu

and DeVita (2019), where we count a trial for a specific cancer type if any of the MeSH codes

map to that type of cancer.
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Table A.1: Clinical Trial Counts By Cancer

Cancer # Trials Fraction Combo Fraction Industry
Hodgkin Lymphoma 2784 0.62 0.34
Breast Cancer 2624 0.65 0.31
Acute Lymphoblastic Leukemia 2469 0.6 0.32
Non-Small Cell Lung Cancer 2341 0.64 0.45
Prostate Cancer 1576 0.52 0.32
Brain Cancer 1532 0.48 0.2
Multiple Myeloma 1233 0.69 0.38
Malignant Melanoma 1201 0.64 0.34
Colorectal Cancer 991 0.7 0.31
Head and Neck Cancer 895 0.57 0.24
Pancreatic Cancer 760 0.73 0.26
Ovarian Epithelial Cancer 726 0.65 0.37
Renal Cell Carcinoma 642 0.55 0.41
Kaposi Sarcoma 562 0.53 0.22
Hepatocellular Carcinoma 456 0.49 0.37
Carcinoid and Neuroendocrine Tumors 434 0.55 0.21
Bladder Cancer 352 0.55 0.32
Gastric Cancer 304 0.76 0.33
Myelodysplastic Syndrome 263 0.5 0.41
Endometrial Cancer 258 0.57 0.22
Non-Hodgkin Lymphoma 240 0.64 0.15
Esophageal Cancer 179 0.73 0.18
Cervical Cancer 175 0.51 0.21
Biliary Tract Cancer 155 0.64 0.32
Malignant Mesothelioma 151 0.54 0.27
Thyroid Cancer 145 0.43 0.23
Osteogenic Sarcoma 89 0.43 0.24
Soft Tissue Sarcoma 75 0.49 0.33
Basal Cell Carcinoma 69 0.16 0.51
Gastrointestinal Stromal Tumor 67 0.34 0.55
Merkel Cell Carcinoma 66 0.48 0.47
Acute Myeloid Leukemia 60 0.63 0.4
Ovarian Germ Cell Tumor 59 0.69 0.03
Small Cell Lung Cancer 57 0.7 0.4
Anal Cancer 33 0.64 0.12
Waldenström’s Macroglobulinemia 30 0.53 0.1
Chronic Lymphocytic Leukemia 27 0.81 0.37
Thymoma 25 0.44 0.08
Adrenocortical Carcinoma 24 0.42 0.21
Chronic Myeloid Leukemia 21 0.38 0.14
Cancer of Unknown Primary 13 0.85 0.08
Testicular Cancer 7 0.43 0.0
Hairy Cell Leukemia 2 0.5 0.5

Notes: Table shows the number of drug trials run by cancer. Fraction Combo is the fraction of trials for that
cancer that are for combinations. Fraction Industry is the fraction of trials for that cancer that have an industry
lead sponsor.
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A.2.2 Extracting Drug Information from Clinical Trials

We use the OpenAI GPT-4o API to extract drugs used in the control and treatment arm(s)

of each trial. The query we use is as follows:

� �
1 request_all = "What drugs are used in the treatment versus control arms of

the clinical trial described below? We provide the trial title and

summary below. If a trial does not use drugs, just say 'none' for both

the treatment and control arms.

2

3 You should return a list with 2 elements separated by semicolons: the word '

treatment:' followed by the drug(s) used in the treatment arms of the

trial (separated by commas), and the word 'control:' followed by the

drug(s) (write none if none are used) used in the control arm (separated

by commas).

4

5 Example outputs:

6 treatment: cisplatin; control: placebo

7 treatment: oxaliplatin, bevacizumab; control: none

8 treatment: none; control: none

9

10 ####

11 The trial title is: '$(trial_title)'.
12 The trial brief summary is: '$(trial_brief_summary)'.
13 The trial full summary is: '$(trial_summary)'.
14 ###"

15

16 output_instructions = "Desired output format is: treatment: drug1, drug2...;

control: drug3, drug4..."

17

18 body = JSON.json(

19 Dict(

20 "model" => "gpt-4o",

21 "messages" => [Dict("role" => "user", "content"=> request_all),
22 Dict("role" => "system", "content"=> output_instructions)

],

23 "temperature" => 0.0)

24 )

25

26 url = "https://api.openai.com/v1/chat/completions"� �
query.jl

A.2.3 Clinical Trial Sample Restrictions

After extracting the drugs used in a trial, we subset to trials that trial at least one drug

(rather than only trialing e.g., a radiation or surgical treatment). We further subset to trials

with at least one location in the US in order to focus on trials for treatments that are most likely
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to be used in the US, which our drug demand usage data covers.

A.2.4 Classifying Combination Clinical Trials

We define a combination trial to be a trial that tests at least two drugs together in a treat-

ment arm of the trial. We do not count a single drug plus some other treatment (e.g., radiation

or surgery) as a combination trial. We also do not count a trial as a combination trial if the

control arm is a combination but the treatment arm is a monotherapy. Figure A.1 plots the

CDF of the number of component drugs in combination therapies.

Figure A.1: Combination Trials by # of Drugs

Notes: Figure shows the CDF of the number of drugs involved in combination trials.

A.2.5 Merging Clinical Trial Drugs with GlobalData and Drugs@FDA

Given the extracted drug names from the trial, we then merge these drug names with

the drug-level dataset we create from GlobalData and Drugs@FDA. Importantly, GlobalData

provides an extensive list of aliases for each drug, include names used in early-stage clinical

trials. We check all possible aliases when merging. Table A.2 shows summary statistics for

merging drugs reported in clinical trials with drugs reported in GlobalData.
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Table A.2: Clinical Trial GlobalData Drug Merge Rates by # Drugs in Trial

# Drugs # Trials Avg Frac Drugs Merged Frac Merged All Drugs
1 Drug 11959 0.8 0.8
2 Drugs 8537 0.89 0.82
3 Drugs 4175 0.88 0.77
4 Drugs 1800 0.85 0.68
5 Drugs 938 0.86 0.64
All 28555 0.85 -

Notes: Table shows summary statistics of the merge rates between drugs in the clinical trial data and drugs in
GlobalData. Each row (except for the last) presents summary statistics subsetting to clinical trials that have a
certain number of drugs. # Trials gives how many trials satisfy that condition (e.g., have a certain number of
drugs), Avg Frac Drugs Merged is the average (over trials) fraction of drugs in a trial that merge to GlobalData,
and Frac Merged All Drugs is the fraction of trials for which all drugs in a trial merge.

A.2.6 Trials per Drug

Figure A.2: Number of Trials Involving a Drug

(a) Approved Drugs (b) Not Approved Drugs

Notes: Figure shows the distribution of the number of trials that is a drug is involved in (in the treatment arm),
separately for approved and not approved drugs.
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Figure A.3: Fraction of Trials for Combinations

(a) Approved Drugs (b) Not Approved Drugs

Notes: Figure shows the distribution of the fraction of trials that is a drug is involved in that are for combinations
(in the treatment arm), separately for approved and not approved drugs.

A.2.7 Trials for New Uses

Figure A.4: Clinical Trials by Funding Type

Notes: Figure shows the counts of fractions of single drug trials for the initial condition versus new conditions,
separately by different trial sponsors.

A.3 Cancer Regimens

Figure A.5 shows an example of how regimens are recorded in Chu and DeVita (2019).

Table A.3 summarizes the number of regimens available for each cancer, the number of drugs

used in each regimen, and the publication year of related scientific papers.
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Figure A.5: Chu and DeVita (2019) example

Notes: Figure shows example example treatment regimens for head and neck cancer, taken from Chu and DeVita
(2019).
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A.3.1 Additional Summary Statistics

Table A.3: Cancer Regimen Summary

Cancer # Regimens Mean # Drugs Min # Drugs Max # Drugs Unique # Drugs Average Paper Year
adrenocortical 2 3.0 2 4 5 2012.0
anal 5 1.8 1 2 6 2007.6
basal cell 2 1.0 1 1 2 2013.5
biliary tract 9 1.67 1 2 6 2004.56
bladder 20 1.9 1 4 18 2004.3
brain 10 1.7 1 3 8 2003.2
breast 70 2.04 1 5 35 2003.99
unknown primary 8 2.5 2 3 11 2001.25
carcinoid and neuroendocrine 10 1.5 1 2 12 2004.0
cervical 21 1.9 1 4 15 2003.19
colorectal 39 2.51 1 5 20 2006.33
endometrial 15 1.93 1 4 14 2001.33
esophageal 12 2.25 1 3 9 2004.75
gastric 22 2.32 1 3 13 2004.82
gastrointestinal stromal tumor 5 1.0 1 1 5 2008.4
head and neck 20 2.05 1 4 13 1999.85
hepatocellular 10 1.4 1 3 12 2006.4
kaposi sarcoma 9 1.33 1 3 11 1995.44
all 17 2.76 1 6 22 1999.12
aml 21 1.67 1 3 19 2002.67
cll 23 1.61 1 3 16 2001.65
cml 10 1.1 1 2 10 2002.9
hairy cell leukemia 3 1.0 1 1 3 1989.33
non-small cell lung 51 1.86 1 3 28 2006.76
small cell lung 12 1.92 1 3 10 1997.0
hodgkin lymphoma 18 3.06 1 8 24 2001.17
non-hodgkin lymphoma 44 3.39 1 11 38 2000.82
primary cns lymphoma 5 2.6 1 6 8 2008.0
malignant melanoma 18 1.44 1 3 17 2005.56
malignant mesothelioma 11 1.73 1 3 8 2004.82
merkel cell 4 2.0 1 3 7 1999.0
multiple myeloma 27 2.26 1 4 16 2005.63
myelodysplastic syndrom 5 1.2 1 2 6 2007.0
osteogenic sarcoma 4 3.25 2 4 7 1997.5
ovarian epithelial 26 1.5 1 3 18 2003.0
ovarian germ cell 1 3.0 3 3 3 2004.0
pancreatic 13 2.08 1 4 10 2003.0
prostate 27 1.48 1 3 21 1999.56
renal cell 16 1.31 1 2 14 2007.38
soft tissue sarcoma 15 2.07 1 5 15 2004.2
testicular 12 2.92 1 5 12 1993.67
thymoma 6 2.83 2 4 11 2000.33
thyroid 8 1.12 1 2 8 2004.25
waldenstrom’s macroglobulinemia 5 2.6 1 3 6 2007.0
Total 691 1.99 1.13636 3.52273 193 2003.19

Notes: Table shows summary statistics of recommended regimens in Chu and DeVita (2019). We drop regimens
that are missing paper publication years. # regimens is the number of recommend regimens for that cancer.
Mean # Drugs is the average number of drugs in a regimen for that cancer. Min # Drugs and Max # Drugs are the
minimum and maximum number of drugs in a regimen for that cancer, respectively. Unique # Drugs is the total
number of unique drugs used in regimens for that cancer. Average Paper Year is the average paper publication
year for the pivotal study for regimens for that cancer.
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Figure A.6: Number of Firms, Drugs Per Regimen in Chu and DeVita (2019)

Notes: Figure shows the number of firms and drugs per regimen in Chu and DeVita (2019).

Figure A.7: Fraction of Drug Market Share from Combinations

Notes: Figure shows the density of the fraction of a drug’s market share (within time, cancer tuples) that comes
from combination regimens. A drug’s market share is calculated as the sum of market shares of regimens the drug
is a component of.
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Figure A.8: Observed versus Constructed Regimen Price

Notes: Figure shows a binscatter of the relationship between observed regimen prices and constructed regimen
prices. Constructed regimen prices are calculated from average drug prices then summed to the regimen level,
while observed prices sum over drugs and then average. This figure demonstrates the lack of price discrimination
based on use in a particular regimen or not.

Table A.4: Observed versus Constructed Regimen Price

Constructed Regimen Price

(Intercept) -0.050
(0.058)

Observed Regimen Price 0.953
(0.006)

N 3,550
R2 0.875

Notes: Table shows the relationship between observed regimen prices and constructed regimen prices. Con-
structed regimen prices are calculated from average drug prices then summed to the regimen level, while ob-
served prices sum over drugs and then average. This table demonstrates the lack of price discrimination based
on use in a particular regimen or not.

A.4 Claims Data

This section describes how we use microdata from CMS and Marketscan to construct cancer

patient treatment regimen usage and prices.
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A.4.1 Populations

Figure A.9 displays counts of patients in the Medicare and Marketscan data. The solid line

and dashed line show the total number of beneficiaries enrolled in Traditional Medicare and

Medicare Advantage, respectively, calculated using the Master Beneficiary Summary File. We

use a 20% random sample of the beneficiaries, where we observe claims for patients enrolled

in Traditional Medicare. The dash-dotted line shows the number of patients we observe in the

Marketscan data, calculated using the Annual Summary Enrollment file.

In order to make our demand system representative of the US population, we scale the

counts of Traditional Medicare patients (and their drug usage etc.) to meet match the total

number of Traditional Medicare and Medicare Advantage patients. We scale up the counts of

Marketscan patients to meet the residual US population.

Figure A.9: Number of Enrollees by Insurance Type

Notes: Figure shows the number of individuals enrolled in Traditional Medicare and Medicare Advantage, and
the number of individuals we observe in the Marketscan data.

A.4.2 Identifying Cancer Patients

To identify cancer patients, we use the 42 types of cancer identified by Chu and DeVita

(2019). In the Medicare and Marketscan data, patients are assigned ICD 10 codes after 2015,

and ICD 9 before 2015, to indicate diagnoses. We consider codes C00-D48 (neoplasms), and

in particular codes C00-D09 (malignant and in situ neoplasms), leaving out codes D10-D36

(benign neoplasms) and D37-D48 (neoplasms of uncertain or unknown behavior). We manu-

ally assign each code to a set of relevant Chu and DeVita (2019) cancer types. The mapping is

one to many (e.g., one ICD 10 code can map to many Chu and DeVita (2019) cancer types). In
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these cases, the diagnosis codes do not allow us to distinguish between different types of can-

cers. An important example of this is lung cancer, where the diagnosis codes do not distinguish

between non-small and small-cell lung cancer.

To convert between ICD 9 and ICD10 codes, we use the NBER ICD9 to ICD10 crosswalk.92

We use the 20% sample of Medicare beneficiaries for years 1998-2019. A beneficiary is

defined to have a type of cancer in a year if a claim is submitted with a primary diagnosis of

that cancer in either the inpatient, outpatient, or carrier files. We use the 100% sample of

the Marketscan dataset. A beneficiary is defined to have a type of cancer in a year if a claim

is submitted with a primary diagnosis code of that cancer in either the outpatient, inpatient

services, or inpatient admissions files.

Table A.5 shows counts of patients by year for the Medicare and Marketscan datasets.

92Available here: https://www.nber.org/research/data/icd-9-cm-and-icd-10-cm-and-icd-10-pcs-crosswalk-o
r-general-equivalence-mappings. These files were downloaded on January 21, 2023.
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Table A.5: Patient Counts by Cancer

Cancer Median Patients Per Year
Medicare Marketscan

Prostate 205,334 47,097
Head and Neck 110,665 26,738
Colorectal 71,295 27,008
Bladder 54,078 13,270
Basal Cell Carcinoma 53,614 118,782
Non-Hodgkin Lymphoma (NHL) 46,927 26,732
Breast 43,554 41,182
Small Cell Lung (SCLC) 29,755 11,404
Non-Small Cell Lung (NSCLC) 29,755 11,404
Osteogenic Sarcoma 26,327 12,208
Malignant Melanoma 20,618 17,930
Renal Cell Carcinoma 19,976 10,119
Chronic Lymphocytic Leukemia (CLL) 19,397 4,942
Hepatocellular Carcinoma 18,718 7,697
Malignant Mesothelioma 18,625 11,072
Anal 18,467 8,244
Endometrial 17,299 9,243
Multiple Myeloma 16,274 4,920
Biliary Tract 16,128 7,077
Brain 14,552 10,754
Hodgkin Lymphoma 14,369 13,088
Ovarian Germ Cell Tumor 12,410 10,616
Ovarian Epithelial 12,410 10,616
Pancreatic 11,338 3,597
Gastric 7,821 2,993
Central Nervous System (CN) 5,548 3,526
Chronic Myeloid Leukemia (CML) 5,496 2,789
Acute Myeloid Leukemia (AML) 5,092 3,414
Acute Lymphoblastic Leukemia (ALL) 4,965 3,990
Esophageal 3,976 1,577
Cervical 3,059 13,833
Hairy Cell Leukemia 2,995 1,210
Waldenstrom Macroglobulinemia (WM) 2,133 576
Testicular 1,158 5,308
Adrenocortical Carcinoma 1,094 1,492
Kaposi Sarcoma 713 610
Thyroid 661 822
Thymoma 456 321
Merkel Cell Carcinoma 451 293

Notes: Table shows counts of patients by cancer, taking a median over years.
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A.4.3 Calculating Regimen Market Shares

Table A.6 shows the average number of drugs cancer patients take that are not included

in the regimen they are assigned to.

Table A.6: Regimen Procedure – Extra Drugs

Cancer Extra Drugs
Prostate 0.18
Head and Neck 0.36
Colorectal 0.72
Bladder 0.11
Non-Hodgkin Lymphoma (NHL) 1.14
Breast 0.23
Non-Small Cell Lung (NSCLC) 0.12
Chronic Lymphocytic Leukemia (CLL) 0.13
Hepatocellular Carcinoma 0.36
Malignant Mesothelioma 0.15
Endometrial 0.39
Multiple Myeloma 0.33
Biliary Tract 0.1
Brain 0.15
Hodgkin Lymphoma 0.5
Ovarian Epithelial 0.18
Pancreatic 0.16
Gastric 0.28
Esophageal 0.13
Mean 0.3

Notes: Table shows the average number of “extra” drugs patients take in addition to drugs in their assigned
regimens, by cancer.

A.4.4 Outside Option

Figure A.10 shows the fraction of patients identified to have a particular type of cancer

that take cancer drugs in a given year. We take the mean over the cancers, and plot this trend

separately for Medicare and Marketscan patients.
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Figure A.10: Fraction of Patients Taking Cancer Drugs

Notes: Figure shows the fraction of cancer patients taking drugs. We take a mean over cancers.

A.4.5 Patient Regimen Summary Statistics

Table A.7 presents summary statistics at the patient level about patient characteristics and

regimen usage, separately for each cancer in our estimation sample.

Table A.7: Regimen - Patient Summary Statistics

Cancer Mean Age Total Regimen Days (Mean) Total Regimen Days (Std) Regimen Days (Mean) Regimen Days (Std) Num Regimens (Mean) Num Regimens (Std)
Biliary Tract 92.6 133 91 120 81 1.1 0.3
Bladder 91.6 170 138 126 95 1.3 0.7
Brain 81.2 184 181 167 165 1.1 0.4
Breast 89.5 355 365 213 261 1.7 1.1
Chronic Lymphocytic Leukemia 88.8 282 325 182 218 1.5 0.9
Colorectal 77.6 266 242 152 128 1.8 1.2
Endometrial 91.0 198 189 160 154 1.2 0.5
Esophageal 88.3 131 90 113 68 1.2 0.4
Gastric 85.4 168 134 128 94 1.3 0.6
Head and Neck 78.3 150 139 117 100 1.3 0.6
Hepatocellular 89.5 145 155 128 136 1.1 0.4
Hodgkin Lymphoma 85.2 153 123 143 103 1.1 0.3
Malignant Mesothelioma 85.6 146 113 117 88 1.2 0.6
Multiple Myeloma 77.5 469 541 226 289 2.1 1.5
Non-Hodgkin Lymphoma 77.8 261 265 201 215 1.3 0.6
Non-Small Cell Lung 76.3 199 195 128 119 1.6 0.9
Ovarian Epithelial 81.4 346 315 154 129 2.2 1.5
Pancreatic 77.7 201 172 141 119 1.4 0.8
Prostate 78.0 430 530 287 376 1.5 0.9

Notes: Table includes summary statistics for patients about demographic characteristics and regimen usage by
cancer.
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B Facts

B.1 Who Funds Combination Innovation

Figure B.1: Clinical Trials by Funding Type

Notes: Figure shows the number of trials run by different sponsors broken in combination (blue) and single
drug trials (gray) and the fraction of that sponsor’s trials that are for combinations (black number). Robust
standard errors are in parentheses on each bar, which come from a trial-level regression of an indicator for being
a combination trial on sponsor type.
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Table B.1: Probability of Combination Trialing

Combination Indicator

(1) (2) (3) (4)

Sponsor Type: Firm + Firm 0.632 0.651 0.013 0.046
(0.014) (0.014) (0.014) (0.040)

Sponsor Type: Firm Solo 0.465 0.479 -0.139 -0.074
(0.005) (0.006) (0.007) (0.032)

Sponsor Type: Public + Firm 0.689 0.685 0.074 0.089
(0.006) (0.007) (0.008) (0.050)

Sponsor Type: Public Solo 0.609 0.600
(0.004) (0.005)

Cancer Type Fixed Effects Yes Yes
Trial Submission Year Fixed Effects Yes Yes

N 28,555 21,807 28,555 26,485
R2 0.593 0.590 0.060 0.333
Within-R2 0.025 0.013
Year Restriction None Post 2007 None None
Weights None None None Enrollment

Notes: Table shows estimates of a trial-level regression of an indicator for being a combination trial on indicators
for different multi-sponsor types. The first column includes the full sample of clinical trials, while the second
checks robustness with respect to only including trials run after 2007. The third column additionally conditions
on cancer type (the first type of cancer reported in the trial) and trial submission year. We choose the “Public
Solo” group as the base. The fourth column additional weights be number of enrolled patients (e.g., trial size).
Robust standard errors are in parentheses.
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B.2 What is the Direction of Combination Innovation

B.2.1 Levels

Figure B.2: Two-Drug Trials by Type
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B.2.2 Baseline Regression Tables

Table B.2: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status – Private

Trial Run (Normalized), Private

Both Branded, Same 10.86546
(0.938387)

Both Branded, Diff 0.46238
(0.019609)

Brand and Generic 1.02547
(0.051401)

N 33,356,609
R2 0.000094

Notes: Table shows estimates of Equation (3.3). Robust standard errors are in parentheses.

Table B.3: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status – Public

Trial Run (Normalized), Public

Both Branded 0.61313
(0.015553)

One Branded, One Generic 1.34790
(0.042284)

Both Generic 5.05438
(0.300375)

N 33,356,609
R2 0.000132

Notes: Table shows estimates of Equation (3.3) for public innovators. Robust standard errors are in parentheses.

B.2.3 Baseline Regression Tables, Not Normalized
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Figure B.3: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status

(a) Firm (b) Public

Notes: Figure shows estimated γk coefficients of Equation (3.3) where we do not normalize the trialing indicator.
Private innovators (firms) are on the left panel, and public innovators on the right. 95% confidence intervals for
the regression coefficients calculated from robust standard errors are displayed on each bar. Regression tables
and additional robustness checks are given in Appendix B.

B.2.4 Extended Regression Results

Trial Nowr f t

βunif
�

L f t

� = γ1 Both Branded Samer f t + γ2 Both Branded Differentr f t

+ γ3 One Branded One Generic Samer f t + γ4 One Branded One Generic Differentr f t

+ γ5 Both Generic Samer f t + γ6 Both Generic Differentr f t + εr f t . (B.1)
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Table B.4: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status – Private

Trial Run (Normalized), Private

Both Branded, Same 10.86546
(0.938387)

Both Branded, Diff 0.46238
(0.019609)

Branded and Generic, Same 1.76066
(0.556746)

Branded and Generic, Diff 1.00675
(0.053207)

Both Generic, Same 0.80991
(0.809899)

Both Generic, Diff 1.13274
(0.210338)

N 33,356,609
R2 0.000094

Notes: Table shows estimates of Equation (B.1) for private innovators. Robust standard errors are in parentheses.

Table B.5: Relative Probability of Trialing 2 Drugs Together by Drug Ownership Status – Public

Trial Run (Normalized), Public

Both Branded, Same 7.69509
(0.546655)

Both Branded, Diff 0.54049
(0.014677)

Branded and Generic, Same 4.81012
(0.636962)

Branded and Generic, Diff 1.29260
(0.041737)

Both Generic, Same 4.65828
(1.344416)

Both Generic, Diff 5.07348
(0.308113)

N 33,356,609
R2 0.000183

Notes: Table shows estimates of Equation (B.1) for public innovators. Robust standard errors are in parentheses.
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B.2.5 Intra-Firm Complementarity

Using data from the NCI-ALAMANC, A Large Matrix of Anti-Neoplastic Agent Combina-

tions, from Holbeck et al. (2017) we can compare whether two-drug combinations that are

owned by the same firm have the same efficacy as measured by laboratory tests on human

tumor cell lines (NCI-60) of all pairwise combinations of a large set of marketed cancer drugs

(≈ 100 drugs, leading to ≈ 5000 combinations) for various dosages.

We first look at the effect of being owned by the same firm on tumor growth rates. The

results are in Table B.7. While the coefficient on the indicator of being owned by the same

firm is negative (indicating the tumor decreasing in size), it is relatively small in magnitude

compared to the mean growth rate, and reduces in magnitude even further when including

drug fixed effects. Figure B.4 shows the distribution of combination score (a measure of how

effective the combination is overall and relative to single-agent therapies, and find similar

results), separately for combinations consisting of drugs owned by the firm or not.

Table B.6: NCI Almanac Tumor Growth Rates

Percent Growth

(1) (2) (3)

(Intercept) 72.771
(0.028)

Same Firm -1.300 -1.301 -0.667
(0.166) (0.163) (0.152)

Cell and Panel Fixed Effects Fixed Effects Yes Yes
Drug 1 Fixed Effects Yes
Drug 2 Fixed Effects Yes

N 2,578,833 2,578,833 2,578,833
F 61.189 63.811 19.383
Within-R2 0.000 0.000
Adjusted R2 0.000 0.057 0.235

Notes: Table shows estimates of a regression of tumor growth rate (percentage) of a specific combination on an
indicator of whether the combination consists of two drugs owned by the same firm.
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Table B.7: NCI Almanac ComboScore

ComboScore

(1) (2) (3)

(Intercept) -2.438
(0.008)

Same Firm 0.175 0.174 -0.166
(0.042) (0.042) (0.043)

Cell and Panel Fixed Effects Fixed Effects Yes Yes
Drug 1 Fixed Effects Yes
Drug 2 Fixed Effects Yes

N 2,578,833 2,578,833 2,578,833
F 17.387 17.385 14.801
Within-R2 0.000 0.000
Adjusted R2 0.000 0.005 0.041

Notes: Table shows estimates of a regression of combination score (higher scores are better) of a specific combi-
nation on an indicator of whether the combination consists of two drugs owned by the same firm.

Figure B.4: Distribution of ComboScore

Notes: Figure shows the distribution of combination scores, separately for combinations consisting of drugs owned
by the firm or not. Each distribution is normalized to show a density.

B.2.6 Multi-Brand Combination Trials

For two-drug combination trials consisting of branded drugs owned by different firms, the

firm that has the drug furthest from patent expiry is significantly more like to run the clinical
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trial (64% of trials) than the firm with the “newer” drug (36% of trials).

B.3 When Does Combination Innovation Occur

We present results from an alternative specification of Equation 3.4 where we omit drug

fixed effects.

Figure B.5: Combination Trials and Generic Entry

Notes: Figure includes dynamic estimates of Equation 3.4 without drug fixed effects.
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Table B.8: Combination Trials and Generic Entry Regression

Original Firm Public Other Firms Total Trials

(1) (2) (3) (4)

Generic Indicator -0.172 3.207 1.505 4.291
(0.020) (0.277) (0.142) (0.350)

Year Fixed Effects Yes Yes Yes Yes

N 3,882 3,882 3,882 3,882
Mean Pre 0.229 3.894 1.462 4.815

Notes: Table shows coefficient on Generic Indicator in Equation (3.4), excluding drug fixed effects. # Trials (Total)
is the total number of combination trials a drug is used in within a year. # Trials Firm is the number of combination
trials run by the original owner of the drug in a year. # Trials Other Firm is the number of combination trials run
by other firms (i.e., not the original owner of the drug) in a year. Generic Indicator is an indicator of whether
drug d is generic at time t (i.e., has had generic entry). Robust standard errors are in parentheses.
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C Demand

C.1 Instrument Details

Table C.1: Instrument First Stage – Medicare

Regimen Price ($k)

# Entrants -0.27509
(0.006316)

Generic Entry Time -0.15212
(0.010108)

Regimen Fixed Effects Yes
Year Fixed Effects Yes

N 34,751
F 1488.304852
First-stage F statistic
Within-R2 0.079509
Adjusted R2 0.893844

Notes: Table shows estimates of the instrument first-stage (the relationship between regimen price and the instru-
ment) for Medicare patients.

Table C.2: Instrument First Stage – Marketscan

Regimen Price ($k)

# Entrants -0.27509
(0.006316)

Generic Entry Time -0.15212
(0.010108)

Regimen Fixed Effects Yes
Year Fixed Effects Yes

N 34,751
F 1488.304852
First-stage F statistic
Within-R2 0.079509
Adjusted R2 0.893844

Notes: Table shows estimates of the instrument first-stage (the relationship between regimen price and the instru-
ment) for Marketscan patients.
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C.2 Micro Moments

We calculate micro moments in the data as follows. Let Ẑ denote the set of demographic

bins. For each ẑ ∈ Ẑ calculate the average characteristic of the taken inside regimens as

p̄ẑ t =

∑

r∈Rt
sẑ r t pr t

∑

r ′∈Rt
sẑ r ′ t

(C.1)

fraction biologicẑ t =

∑

r∈Rt
sẑ r t1r biologic

∑

r ′∈Rt
sẑ r ′ t

(C.2)

fraction comboẑ t =

∑

r∈Rt
sẑ r t1r combo

∑

r ′∈Rt
sẑ r ′ t

(C.3)

We then calculate the covariance between ẑ and and each of these average characteristics

(weighted by the number of patients in that bin).

In the model, these moments are calculated similarly, but instead of observing sẑ r t directly,

we impute sẑ r t from sr̂ t and the integration weights of the demographic bins. These quantities

are simple to compute in the model.

Micro moment targets are show in Table C.3. Additional patterns are displayed below.

Table C.3: Micro Moment Targets

Micro Moment Medicare Medicare Dual Marketscan
Cov(ai t , pr t) -0.0157 -0.0157 0.0217
Cov(ai t ,1r combo) -0.0076 -0.0076 0.0008
Cov(ai t ,1r biologic) -0.004 -0.004 0.0004

Notes: Table shows micro moment targets by insurance type. Prices are in thousands of dollars and age is divided
by 100. These patterns are shown in detail in Appendix C.
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Figure C.1: Regimen Price and Patient Age – Medicare

Notes: Figure shows a binscatter of regimen price on age for Medicare patients. Dataset is
(share, age-group) monthly average characteristics (conditional on inside good).

Figure C.2: Regimen Price and Patient Age – Marketscan

Notes: Figure shows a binscatter of regimen price on age for Marketscan patients. Dataset is
patient-level monthly regimen usage (conditional on inside good).
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C.3 Additional Results

Figure C.3: Distribution of Own Price Elasticities – Medicare

Notes:. Figure shows the distribution of own-price elasticities of demand for Medicare patients.

Figure C.4: Distribution of Own Price Elasticities – Medicare Dual

Notes:. Figure shows the distribution of own-price elasticities of demand for Medicare dual-enrolled patients.
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Figure C.5: Distribution of Own Price Elasticities – Marketscan

Notes: Figure shows the distribution of own-price elasticities of demand for Marketscan patients.

Figure C.6: Distribution of Regimen Fixed Effects – Medicare

Notes: Figure shows the distribution of regimen fixed effects for Medicare patients.
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Figure C.7: Regimen Fixed Effect Comparison Across Insurance Types

Notes: Figure shows binscatters of the relationship between the regimen FEs estimated in the Medicare sample
versus the Marketscan and Medicare Dual samples.

Table C.4: Regimen Fixed Effect Comparison Across Insurance Types

Regimen FE Medicare

(1) (2)

(Intercept) -1.688 2.807
(0.042) (0.068)

Regimen FE Marketscan 0.536
(0.008)

Regimen FE Medicare Dual 1.741
(0.045)

N 2,444 1,604
R2 0.634 0.482

Notes: Tables shows regressions of the relationship between the regimen FEs estimated in the Medicare sample
versus the Marketscan and Medicare Dual samples.
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Table C.5: Regimen Fixed Effect Comparison – Complementarities – Colorectal Cancer

Drug 1 Drug 2 Drug 3 Drug 4 Regimen FE
regorafenib 7.59
nivolumab 6.72
pembrolizumab 5.35
oxaliplatin fluorouracil leucovorin bevacizumab 4.88
irinotecan cetuximab 4.77
cetuximab bevacizumab irinotecan 4.06
panitumumab 3.84
cetuximab 3.78
irinotecan fluorouracil leucovorin bevacizumab 3.69
irinotecan fluorouracil leucovorin cetuximab 3.59
cetuximab bevacizumab 3.47
fluorouracil leucovorin bevacizumab 2.59
oxaliplatin fluorouracil leucovorin 2.08
irinotecan fluorouracil leucovorin panitumumab 1.76
irinotecan 0.86
oxaliplatin fluorouracil levoleucovorin 0.71
fluorouracil leucovorin 0.54
irinotecan fluorouracil leucovorin 0.44
fluorouracil oxaliplatin -0.22
fluorouracil -0.34
irinotecan oxaliplatin fluorouracil leucovorin -0.51
fluorouracil levoleucovorin -0.52
capecitabine -3.1

Notes: Table shows estimated regimen fixed effects ξr for colorectal cancer. Supersets of drugs often have higher
fixed effects that the subsets of drugs, indicating complementarity.
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Table C.6: Regimen Fixed Effect Comparison – Complementarities – Breast Cancer

Drug 1 Drug 2 Drug 3 Drug 4 Regimen FE
palbociclib fulvestrant 10.6
everolimus exemestane 10.15
palbociclib letrozole 9.48
docetaxel carboplatin pertuzumab trastuzumab 7.6
ado-trastuzumab emtansine 5.81
trastuzumab 2.61
anastrozole 1.86
eribulin 1.77
docetaxel carboplatin trastuzumab 1.73
paclitaxel bevacizumab 1.53
trastuzumab paclitaxel 1.51
fulvestrant 1.2
letrozole 1.15
tamoxifen 1.05
trastuzumab docetaxel 0.72
trastuzumab vinorelbine 0.17
exemestane 0.16
trastuzumab gemcitabine -0.36
docetaxel -0.47
paclitaxel -0.51
doxorubicin cyclophosphamide -0.73
docetaxel cyclophosphamide -0.96
gemcitabine -0.99
carboplatin paclitaxel -1.33
cyclophosphamide methotrexate fluorouracil -1.65
megestrol -1.87
doxorubicin cyclophosphamide docetaxel -1.87
vinorelbine -1.88
doxorubicin cyclophosphamide paclitaxel -2.02
carboplatin docetaxel -2.08
fluorouracil epirubicin cyclophosphamide -2.49
docetaxel doxorubicin -2.92
gemcitabine paclitaxel -3.16
doxorubicin -3.17
cyclophosphamide doxorubicin fluorouracil -3.21
doxorubicin paclitaxel -3.83

Notes: Table shows estimated regimen fixed effects ξr for breast cancer. Supersets of drugs often have higher
fixed effects that the subsets of drugs, indicating complementarity.
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D Bargaining

D.1 Consumer Surplus Weight

We describe two sets of reasons why the insurer might weight consumer surplus with some

weight ρ > 1 in its objective.

Patient Price Misperception: The first can be microfounded by patient misperceptions

of drug costs. Suppose the insurance market is competitive, so that insurers must offer some

minimum level of consumer surplus CS∗. For simplicity, assume there is one drug with demand

x(p). The insurer chooses premiumΦ and drug price p. The consumer pays pc(p), but perceives

price to be µpc(p) (e.g., as suggested by Abaluck Gruber). The insurer’s objective is

max
Φ,p

Φ− (p− pc(p))x(p) s.t. −Φ+
∫ x(pc(p))

0

x−1(s)ds−µ× pc(p)x(pc(p)) = CS∗ (D.1)

We can simplify

∫ x(pc(p))

0

x−1(s)ds =

∫ ∞

pc(p)

x(s)ds+ pc(p)x(pc(p)) (D.2)

Substituting for Φ, the objective function becomes

max
p

∫ ∞

pc(p)

x(s)ds+ pc(p)x(p)−µpc(p)x(p)− (p− pc(p))x(p)− CS∗ (D.3)

Suppose pc(p) = ζp (i.e., constant coinsurance rate). Then the objective can be further sim-

plified as

max
p

∫ ∞

pc(p)

x(s)ds+ (ζ−µζ− (1− ζ))px(p)− CS∗ (D.4)

=

∫ ∞

pc(p)

x(s)ds+ (ζ(2−µ)− 1)px(p)− CS∗ (D.5)

=

∫ ∞

pc(p)

x(s)ds+
(ζ(2−µ)− 1)

1− ζ
(1− ζ)px(p)− CS∗ (D.6)

Suppose ζ = .2 and µ = .8. This gives a weight of .95 on insurer costs. This weight is

decreasing in µ and ζ. Other reasons that might decrease µ (i.e., lower consumer expectation

of cost):
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• underestimating sickness / duration of treatment

• overestimating probability of getting high cost drugs (i.e., overestimating probability of

prior authorization) – think of as making ex-post cost smaller than expected

• physicians steering to high-cost drugs

Patient Value Misperception: A second reason for ρ > 1 could be that consumers them-

selves “overweight” the (expected) consumer surplus from these drugs. If a patient overweights

the probability she will need to take drugs for a cancer, or overweights the value of those drugs

(i.e., because of advertising), then in order to get the consumer to choose a particular insurance

plan, the insurer might as well.

D.2 Estimation Procedure Details

Define∆Vf t = Vι t (Rt , pt)−Vι t
�

Rt \R f t , pt

�

as the disagreement payoff for firm f at time

t. The first-order condition of the Nash Bargaining problem of firm f in Equation 5.1 for pd t ,

where d ∈ D f t (Rt) is

0= γ f
1
π f t

∂ π f t

∂ pd t
+
�

1− γ f

� 1
∆Vf t

∂ Vt

∂ pd t
. (D.7)

The derivatives are given by

∂ π f t

∂ pd t
=
∑

ι

∑

c∈C

Mιc t

∑

d ′∈D f t

∑

r∈Rc t (d ′)

§

(pd ′ t −mcd ′ t)
∂ sιr t

∂ pd t
+ sιr t1

�

d = d ′
�

ª

(D.8)

Given a bargaining weight, we can invert the FOCs for the vector of marginal costs (mcd t)d∈D.

When firms are single-product, marginal costs are given by

mcd t =
γ f∆Vt

∑

ι

∑

c Mιc t

∑

r∈R(d)

�

sιr t + pd t
∂ sιr t
∂ pd t

�

+ (1− γ f )
∂ Vt
∂ pd t

∑

ι

∑

c Mιc t

∑

r∈R(d) pd tsιr t

γ f∆Vt

∑

ι

∑

c Mιc t

∑

r∈R(d)
∂ sιr t
∂ pd t
+ (1− γ f )

∂ Vt
∂ pd t

∑

ι

∑

c Mιc t

∑

r∈R(d) sιr t

(D.9)

When firms own multiple drugs, we can solve for marginal costs by inverting the stacked first-

order conditions.
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D.3 Solving for Equilibrium Prices

The first-order condition in Equation D.7 may be numerically ill-conditioned when π f t ↓ 0

or ∆Vf t ↓ 0, so we instead solve using the transformed FOC

0= γ f

∂ π f t

∂ pd t
∆Vf t +

�

1− γ f

� ∂ Vt

∂ pd t
π f t . (D.10)

D.4 Additional Results

Figure D.1: Biologic Drug Markups

Notes: Figure shows the distribution of markups (calculated as margin over marginal cost) of biologic drugs.

Table D.1: Bargaining Weight Robustness

ρ γ γ SE Markup Markup SD
8.04 0.69 0.29 0.25 0.44

2.5 1.0 0.0 0.11 0.37
5.0 0.89 0.51 0.22 0.41
10.0 0.52 0.14 0.26 0.44

Notes: Table shows how the manufacturer bargaining varies with the consumer surplus weigh ρ. The first row
contains our baseline estimates. The remaining rows fix ρ and different levels and estimate the bargaining weight.
Model implied markups are computed for each specification.
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E Combination Innovation Externalities

E.1 Model Fit

Figure E.1: Externality Model Fit: Predicted versus Observed Market Shares after Innovation

(a) Single Drug Innovation

(b) Combination Therapy Innovation

Notes: Figures show binscatters of the relationship between drug market shares predicted by the model and drug
market shares observed in the data after innovation events. Panel (a) contains market shares after the introduction
of a single drug. Panel (b) contains market shares after the introduction of a combination. Drug market shares
are calculated within cancer, summing over market shares of regimens (either single or combination) that drug
is used in. Figure only includes branded drugs.
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F Dynamic Model

F.1 Model Solution Details

F.1.1 Approximation Error Monte Carlo

We compare the exact and approximate expected value functions (over states) for a model

with 3 periods, 9 potential regimens, and 4 quality states for each regimen (not trialed, trialed

and failed, trailed and success with low quality, and trialed and success with high quality).

Solving the model exactly requires evaluating over 250,000 states each period. We choose

small number of states (≈ 5000) for the approximation. Figure F.1 shows the relationship

between the exact expected value function versus the approximation value function. We ob-

serve minimal approximation error. Importantly, the error does significantly increase in earlier

periods of the game.

Figure F.1: Exact EV versus Approximate EV

Notes: Figure shows the relationship between the exact expected value function and the approximate expected
value function, by period.

F.2 Computing Counterfactuals

For focal regimen r, set sr0 to be the initial state in data. For each simulation, we proceed

as follows. For each t until the model predicts trialing of the focal regimen:

(i) Compute flow surplus for each innovator at sr t .

(ii) Compute the ex-ante choice-specific value functions for each innovator using the sieve

computed at the counterfactual parameters.
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(iii) Draw random variables to determine state transition:

(a) Draw uniform random variables to determine trialing decisions of each innovator

using the conditional choice probabilities that are derived from the ex-ante choice-

specific value functions.

(b) Draw uniform random variables to determine the trialing decisions of tracked (non-

focal) regimens.

(c) Draw uniform random variables to determine trial success and random variables

from quality distribution G to determine trial outcomes of non-focal and focal reg-

imens (if applicable).

(iv) Update the state.

We repeat this procedure a large number of times (250) for each focal regimen and compute

average trial times (and fraction of trials by each innovator) over these repetitions.

F.3 Estimation Sample

Table F.1: Dynamic Model Regimens: Summary Statistics

Public Trial Public Trial Private Trial Private Trial
Mean Std Dev Mean Std Dev

Time to First Trial 5.65 3.91 4.44 3.49
Start Year 2003.96 5.15 2007.74 5.68
Number of Drugs 2.63 0.73 2.49 0.67
Success Indicator 0.01382 0.00947

Number of Regimens 5138 4014

Notes: Table shows summary statistics of the regimens included in the dynamic model.
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F.4 Model Fit

Figure F.2: Model Fit - Trial Year

Notes: Figure shows the relationship between the trial year in the data and the model predicted trial year through
a binscatter.

F.5 Nonparametric CCP Estimation

We produce first-stage estimates of conditional choice probabilities by regressing trialing

decisions on functions of state variables, separately for public innovators (Table F.2) and private

firms (Table F.3). We focus on the timing of the trial, summary statistics of other regimens (e.g.,

number of untested regimens in the state), and cancer fixed effects.
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Table F.2: Public CCPs

action

(1) (2) (3) (4) (5)

(Intercept) 0.040 0.357 0.366 0.366 0.306
(0.003) (0.020) (0.020) (0.020) (0.023)

Time since first year 0.023
(0.001)

Time since first year (0-5) -0.286 -0.260 -0.260 -0.262
(0.020) (0.020) (0.020) (0.020)

Time since first year (5-10) -0.137 -0.125 -0.125 -0.131
(0.020) (0.020) (0.020) (0.020)

Time since first year (10-15) -0.077 -0.071 -0.071 -0.076
(0.022) (0.021) (0.021) (0.021)

Number of untested regimens in state -0.011 -0.011 -0.015
(0.001) (0.001) (0.001)

Time since generic (owned drug in regimen) -0.002 -0.002
(0.002) (0.002)

cancer: bladder 0.045
(0.017)

cancer: breast 0.098
(0.013)

cancer: cll 0.070
(0.013)

cancer: colorectal 0.087
(0.015)

cancer: head and neck 0.053
(0.014)

cancer: hepatocellular 0.028
(0.016)

cancer: hodgkin lymphoma 0.052
(0.013)

cancer: multiple myeloma 0.095
(0.014)

cancer: non-hodgkin lymphoma 0.074
(0.013)

cancer: non-small cell lung 0.108
(0.014)

cancer: ovarian epithelial 0.077
(0.015)

cancer: pancreatic 0.068
(0.014)

cancer: prostate 0.058
(0.014)

N 30,759 30,759 30,759 30,759 30,759
R2 0.053 0.055 0.063 0.063 0.067

Notes: Table shows CCP estimates for public innovators.
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Table F.3: Private CCPs

action

(1) (2) (3) (4) (5)

(Intercept) 0.021 0.005 0.009 0.009 -0.002
(0.001) (0.005) (0.005) (0.005) (0.006)

Time since first year -0.001
(0.000)

Time since first year (0-5) 0.015 0.027 0.027 0.028
(0.005) (0.005) (0.005) (0.005)

Time since first year (5-10) 0.011 0.016 0.016 0.015
(0.005) (0.005) (0.005) (0.005)

Time since first year (10-15) 0.001 0.004 0.004 0.003
(0.006) (0.006) (0.006) (0.006)

Number of untested regimens in state -0.005 -0.005 -0.008
(0.000) (0.000) (0.000)

Time since generic (owned drug in regimen) -0.001 -0.001
(0.000) (0.000)

cancer: bladder 0.004
(0.004)

cancer: breast 0.039
(0.003)

cancer: cll 0.011
(0.003)

cancer: colorectal 0.023
(0.004)

cancer: head and neck 0.007
(0.004)

cancer: hepatocellular 0.013
(0.004)

cancer: hodgkin lymphoma 0.001
(0.003)

cancer: multiple myeloma 0.031
(0.004)

cancer: non-hodgkin lymphoma 0.013
(0.003)

cancer: non-small cell lung 0.047
(0.003)

cancer: ovarian epithelial 0.014
(0.004)

cancer: pancreatic 0.015
(0.004)

cancer: prostate 0.001
(0.004)

N 74,430 74,430 74,430 74,430 74,430
R2 0.001 0.001 0.010 0.010 0.020

Notes: Table shows CCP estimates for private innovators.
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F.6 Alternative Estimation Procedure: Euler Perturbations

This section derives estimating equations for exploiting finite dependence to estimate the

model via Euler perturbations.

F.6.1 Estimation Equations

Let pr f t(sr t) be the CCP for focal player given state sr t (focal regimen r, focal player f ,

time t), and let pr f tc(sr t) be the (aggregate) CCP of competitors.

Compare two sequences of planned trialing actions for an agent

(i) (0, 1,1, . . .)

(ii) (1, 1,1, . . .)

Then compare choice-specific conditional value functions for these choices, and observe
that the game ends up in same state by period t + 2:

vr f t(sr t ; 0, 1) = πr f t(sr t) + βE
�

πr f t+1(st+1| f doesn’t trial at t) + (1− pr f tc(st))κr f t+1

�

+ β2E
�

vr f t+2(st+2; 1)
�

,

vr f t(sr t ; 1) = πr f t(sr t)−κr f t + βE
�

πr f t+1(st+1| f trials at t)
�

+ β2E
�

vr f t+2(st+2; 1)
�

.

Subtracting these terms gives

vr f t(sr t; 1)− vr f t(sr t; 0, 1) = −κr f t + βE
�

πr f t+1(st+1| f trials at t)
�

− βE
�

πr f t+1(st+1| f doesn’t trial at t) + (1− pr f tc(st))κr f t+1

�

.

This leads to a two-step estimation approach. The first step is to nonparametrically esti-

mate CCPs. In the second step, we use the recovered CCPs and the Hotz-Miller inversion to

estimate dynamic parameters:

ln

�

pr f t(sr t)

1− pr f t(sr t)

�

=
1
θ ε

�

vr f t(sr t; 1)− vr f t(sr t; 0)
�

.

Notice however the choice-specific conditional value function vr f t(sr t; 0, 1) is not the same as

the choice-specific value function vr f t(sr t; 0). However, we can estimate the difference between
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these terms. We have that

Vr f t(st) = θ
εE
�

ln
�

exp
�

1
θ ε

vr f t(st; 0)
�

+ exp
�

1
θ ε

vr f t(st; 1)
���

= vr f t(st; 1)− θ ε ln pr f t(sr t)

= vr f t(st; 0)− θ ε ln(1− pr f t(sr t))

and

vr f t(sr t; 0) = πr f t(sr t) + βE
�

Vr f t+1(st+1)
�

= πr f t(sr t) + βE
�

vr f t+1(st+1; 1)− θ ε ln pr f t+1(st+1)
�

and

vr f t(sr t ; 0, 1) = πr f t(sr t) + βE
�

πr f t+1(st+1| f doesn’t trial at t) + (1− pr f tc(st))κr f t+1

�

+ β2E
�

vr f t+2(st+2; 1)
�

= πr f t(sr t) + βE
�

(1− pr f tc)vr f t+1(st+1| f trials); 1) + pr f tc(vr f t+1(st+1| f doesn’t trial; 1))
�

= πr f t(sr t) + βE
�

vr f t+1(st+1; 1) + pr f tcκr f t+1

�

This gives

v(sr t ; 1)− v(sr t ; 0) = v(sr t ; 1)− (v(sr t ; 0, 1) + correction)

= −κr f t + βE
�

πr f t+1(st+1| f trials at t)
�

− βE
�

πr f t+1(st+1| f doesn’t trial at t) + (1− pr f tc(st))κr f t+1

�

+ βE
�

θ ε ln pr f t+1(st+1) + pr f tc(sr t)κr f t+1

�

This is a similar result to Arcidiacono and Ellickson (2011) (and applied, in, e.g., Scott,

2014), but with a correction for free-rider problem: there is some probability of ending up in

trialed state but not actually having to run trial.

We can then apply the standard rational expectations assumption. Under the assumption

of rational expectations, the conditional expectation of CCPs and profits at t+1 is equal to the

realized variables minus an expectational error. We assume this error is orthogonal to state

variables at period t. That expectational error will be included in the regression error term.
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The second step estimation equation is then

ln

�

pr f t(sr t)

1− pr f t(sr t)

�

− β ln pr f t+1(sr t+1) =

1
θ ε

�

−κr f t + βπr f t+1(sr t+1| f trials at t)− βπr f t+1(sr t+1| f doesn’t trial at t) + βpr f tc(sr t)κr f t+1

− β(1− pr f tc(sr t))κr f t+1 + expectation error
�

=
1
θ ε

�

βπr f t+1(1− pr f tc(sr t)) + κr f t(−1+ β(2pr f tc(sr t)− 1))
�

+ expectation error
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G Institutional Details

G.1 Treatment Decisions

Cancer treatment decisions are influenced by a variety of factors, including the type and

stage of cancer, patient characteristics, regimen characteristics, prior therapies, and the in-

dividual response to treatment. Treatments regimens, which may include single agents or

combination therapies, are typically classified as first-line, second-line, or beyond. However,

the same regimen might be recommended at different stages depending on these factors, as

the choice of therapy is tailored to the patient’s needs and the progression of their disease.

Figures G.1, G.2, and G.3 illustrate potential treatment pathways for patients with ad-

vanced or metastatic colon cancer who are candidates for intensive therapy (National Com-

prehensive Cancer Network, 2024). Notably, certain regimens may appear as options across

multiple lines of treatment—whether as first-line, second-line, or later therapies—highlighting

their substitutability in different clinical contexts. These regimens may include single agents

or drug combinations, tailored to the patient’s disease progression and treatment history.
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Figure G.1: Example Treatment Progression (1)

Notes: Figure shows treatment pathways for patients with advanced or metastatic colon cancer (National Com-
prehensive Cancer Network, 2024).
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Figure G.2: Example Treatment Progression (2)

Notes: Continuation of Figure G.1.
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Figure G.3: Example Treatment Progression (3)

Notes: Continuation of Figure G.1.
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G.2 Clinical Trial Cost Components

Table G.1: Clinical Trial Cost Components

Cost Component Cost Group Mean Percent
Data Management Costs Administrative 1.0
Cost Per IRB Approvals Administrative 0.9
Cost of IRB Amendments Administrative 0.0
Administrative Staff Costs Administrative 19.6
Patient Recruitment Costs Patient Recruitment 2.3
Patient Retention Costs Patient Recruitment 0.2
Clinical Procedure Total Clinical Procedure 19.2
SDV Costs Site 6.8
RN/CRA Costs Site 7.4
Physician Costs Site 5.8
Central Lab Costs Site 8.4
Site Recruitment Costs Site 2.6
Site Retention Costs Site 12.9
Site Monitoring Costs Site 12.9

Notes: Table shows estimates of clinical trial cost components (as a percentage of total cost) from Sertkaya et al.
(2014). The cost of drugs used in the trial would be recorded under the category “Clinical Procedure Total,”
which also likely includes costs associated with administering the drugs.

G.3 Contracting Frictions

The development of cancer drug combination therapies faces several significant contract-

ing frictions that hinder collaboration between firms and the ability of firms to internalize

innovation externalities through Coasian bargaining.

One major challenge is the uncertainty surrounding the commercial potential of combi-

nation regimens. This uncertainty complicates negotiations between firms, often leading to a

“hold up” problem where each party tries to extract more value than their contribution war-

rants. As Humphrey et al. (2011) notes, this can result in negotiations being viewed as a

“zero-sum exercise” with perceived economic winners and losers.

Intellectual property (IP) concerns also pose substantial barriers to collaboration. Com-

panies are often reluctant to combine their drugs with those from other firms due to worries

about potential IP violations and liabilities. This extends to concerns about “secondary IP” that

might arise from unexpected therapeutic benefits of drug combinations. As a result, firms tend

to prefer developing combinations using only their own drugs, as it simplifies the IP landscape:

• “One company might have a candidate therapy that would make sense to test with a drug
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from a different firm. But because the two firms hold the patents to each separately,

both parties might worry about future liabilities, intellectual property (IP) rights, and

secondary IP (that is, IP issues that might arise from unexpected new therapeutic benefits

from combining the drugs)” (Deng, 2015).

• “They would rather do it with two of their own drugs, because it makes life easy” (Insti-

tute of Medicine et al., 2012).

• “A major impediment to companies sharing their cell lines and drug candidates pre-

clinically is intellectual property issues, while others stressed that intellectual property

rights impede clinical trials of combination cancer therapies” (Institute of Medicine et al.,

2012).

Another significant friction arises from the potential for adverse effects in combination

therapies. Companies fear that unexpected negative outcomes in combination trials could

harm the development prospects of their individual drugs. This risk is particularly acute for

drugs still in the investigational stage:

• “There was a day, years ago, when the only drugs worth testing were coming from CTEP

[NCI’s Cancer Therapy Evaluation Program],” said Johnson. But these days, most drugs

come from companies, whose corporate cultures—and in particular, their legal depart-

ments—render them reluctant to collaborations with potential competitors” (Goldman,

2003).

• “Such combination trials are relatively easy when the compounds are all owned or li-

censed by one company, but what about combining an investigational drug with another

investigational drug from a different company? Companies developing one or both com-

pounds have real concerns—not the least of which is the fear of fortuitous bad reactions.

“Suppose we did a combination trial,” Johnson mused, “and had some catastrophic re-

sult—like the first three patients just up and died within 2 hours of being treated. That

would put a cold chill on both drugs. That’s the conundrum that companies face” (Gold-

man, 2003).

Antitrust concerns and pricing issues further complicate the landscape. Some companies

express reluctance to engage in collaborative R&D due to perceived antitrust risks (Institute of

Medicine et al., 2012):

• “Some drug companies have expressed reluctance to conduct collaborative R&D on in-

vestigational drugs with other companies because of concerns about violating antitrust

laws” (Institute of Medicine et al., 2012).
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Additionally, competition laws in various jurisdictions can prevent manufacturers from

agreeing on pricing strategies for combination treatments without impacting standalone drug

prices, limiting their ability to optimize pricing for different use cases. Podkonjak et al. (2021)

highlights this friction in the UK, and similar institutional details also apply to the US context:

• “UK competition law, enforced by the Competition Markets Authority (CMA), prevents

individual manufacturers agreeing prices for their treatments as part of an agreement

for splitting revenues from combination treatments, where this has the effect of also

impacting prices for the treatments when sold on a standalone basis. It also prohibits the

exchange of pricing or other sensitive commercial information that could have the effect

of limiting competition between the manufacturers when supplying their treatments on

a standalone basis” (Podkonjak et al., 2021) (statement for UK, but something similar

true in US).

G.4 Exclusivity

A drug is protected from competition through two mechanisms: patents and FDA “data

exclusivity.” A firm can directly patent a drug (more precisely an “active moiety,” the part

of a drug responsible for the physiological effect) after discovery, in which case it has the

sole right to manufacture and market the drug for 20 years, with the exception of the Bolar

exemption which protects the rights of others to use the drug in research. It can further apply

for patents related to other formulations and indications at any time that would extend the

firm’s exclusive right to market the drug for these new purposes, but would not interfere with

generic competition under the original formulation or indications.

The FDA’s data exclusivity provisions function similarly: The firm(s) applying for New

Chemical Entity (NCE) exclusivity must submit a New Drug Application (NDA) describing the

drug and the clinical trials used to verify the drug’s safety and efficacy for a given formulation

and indication. A successful NDA gives the firm(s) an exclusive right to market the drug in the

US for 5 years, unless another firm undertakes duplicate clinical trials that verify safety and

efficacy. (In practice, the latter does not occur either because a drug with an NDA is also under

patent protection or because the time and expense needed to conduct clinical trials would ex-

ceed the profits that could be earned before the expiry of the initial NDA.) Note that the FDA

requires the NDA applicant to have “conducted or sponsored the study by providing 50 percent

of the funding or by purchasing exclusive rights to the study.” While a given drug is still under

NCE exclusivity, the “exclusive firm(s)” can conduct additional trials to show safety and effi-

cacy for new formulations and indications, including the use of the drug in combination with

others. These additional trials allow the firm(s) to apply for New Clinical Investigation (NCI)
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exclusivity, which protects the right to market the drug according to its new uses for an addi-

tional 3 years regardless of the patent or NCE exclusivity term. Other firms can also conduct

clinical trials and attempt to receive NCI exclusivity while NCE exclusivity is still in force, but

this would again be precluded by patent protection and may require additional clinical trials

if data produced for the original NDA is needed to establish safety/efficacy. For these reasons,

we expect other firms to apply for NCI exclusivity only after patent protection and the original

NCE exclusivity period have lapsed.

It is not clear how valuable additional “method-of-use” patents or NCI exclusivity provi-

sions are for firms after the original patent and NCE exclusivity have lapsed. In principle,

off-label use allows doctors to prescribe generic versions of a drug for use in combinations or

for indications that have only been tested using the branded version of a drug, though insur-

ance reimbursement restrictions may affect this. There is some concern that method-of-use

patents or NCI exclusivity provisions may have a chilling effect on generic entry after the orig-

inal patent and NCE exclusivity have lapsed if the entrants take any action to market the drug

for new uses, but it is not clear how important this is (Strohbehn et al., 2021; Feldman, 2022;

Tu and Sarpatwari, 2023). In general, it appears that firms only have incentives to conduct

new clinical trials for their own drugs that are still under original patent or NCE exclusivity

protection.

We make a first attempt at understanding the prevalence of patenting for combinations by

using data from Durvasula et al. (2023) to extract patents and exclusivity extensions associated

with combinations. We first subset to patents and exclusivity instances that pertain to oncology

drugs. We count the mean number of patent use codes and exclusivity codes that a particular

drug has per year, and we calculate the same means for patents and exclusivity that pertain

to combinations. We say a particular patent use code or exclusivity code is associated with

combinations if it includes more than one drug in the description or says the word combination

(or close variants). There is an increasing number of patents for each drug associated with

combinations (Figure G.4), but these patents do not seem to translate into explicit exclusivity

extensions by the FDA (Figure G.5).
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Figure G.4: Patent Use Codes and Combinations

Notes: Figure shows the mean number of patent use codes per drug by year in total and that are associated with
combinations.

Figure G.5: Exclusivity Codes and Combinations

Notes: Figure shows the mean number of exclusivity codes per drug by year in total and that are associated with
combinations.

G.5 Clinical Trials

ClinicalTrials.gov defines a “sponsor” as the entity that initiates the study, while a “col-

laborator” is any organization other than the sponsor that provides support (funding, design,

implementation, data analysis, or reporting). The legal definition of “sponsor” is provided in
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21 CFR 50.3:

“A person who initiates a clinical investigation, but who does not actually conduct the in-

vestigation, i.e., the test article is administered or dispensed to or used involving, a subject

under the immediate direction of another individual. A person other than an individual (e.g.,

corporation or agency) that uses one or more of its own employees to conduct a clinical in-

vestigation it has initiated is considered to be a sponsor (not a sponsor-investigator), and the

employees are considered to be investigators.”

The Food and Drug Administration Amendments Act of 2007 requires that clinical trial

information submissions include the sponsor, but not collaborators (42 CFR 11). It is not clear

how extensive reporting of collaborators is.
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