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Recitation Plan: Solve the canonical model of regulation under asymmetric information due

to Laffont and Tirole (1993).1

1 Baseline Model

Consider the simplest possible setting of regulation or procurement: A government seeks to

contract with one firm to carry out a project.2 Completion of the project yields gross surplus

S > 0 to consumers. The monetary cost of the project is C = β − e, where β ∈ [β , β̄] is the

baseline cost and e ≥ 0 is the reduction in cost due to effort exerted by the firm. For example,

this captures any planning or innovation that reduces the quantity of labor or materials needed

to complete the project. Effort reduces the firm’s utility by ψ(e) ≥ 0 in money-metric terms,

where ψ satisfies the regularity conditions

ψ(0) = 0, lim
e↑β
ψ(e) =∞, ψ′(e),ψ′′(e)> 0.

Note in particular that the marginal cost of effort increases as effort grows, ψ′′(e)> 0.

The government can compensate the firm for its costs by paying a transfer. For accounting

purposes, I suppose that the government always pays the cost C and the net transfer t. The

firm’s utility is then

U ≡ t −ψ(β − C
︸ ︷︷ ︸

= e

).

To capture the social costs associated with distortionary taxation, I suppose that each dollar of

public funds has a total resource cost of 1+ λ dollars, where λ ≥ 0 denotes the cost of public

1See chapter 1 of Laffont and Tirole (1993) for many extensions of the basic model described in these notes.
2For example: building a bridge, designing a new missile, or digging underneath a prominent New England

city to re-route two interstate highways.

1

https://en.wikipedia.org/wiki/Big_Dig
https://en.wikipedia.org/wiki/Big_Dig


funds. Utilitarian welfare (and the government’s objective) is then

W ≡ S − (1+λ)(C + t) + t −ψ(e)

= S − (1+λ)(C +ψ(e))−λU .

When λ = 0, welfare is simply the gross surplus from the project S less its economic cost

C +ψ(e); the government is indifferent to the split of this net surplus between consumers and

the firm. When λ > 0, collecting funds for the cost C and the transfer t is itself costly, so the

government prefers to reduce the firm’s utility (and hence the transfer t).

Throughout the analysis, I assume that the monetary cost C is always observable to the govern-

ment. As a result, the government can design a potentially nonlinear schedule t(C) describing

the firm’s net transfer as a function of the cost, which constitutes the contract offered to the

firm. Given the contract t(C), the firm chooses the cost (or equivalently its effort) to maximize

its utility:

Uβ ≡ max
C∈[0,β]

t(C)−ψ(β − C). (1.1)

I will discuss both the “complete information” benchmark in which the baseline cost β and the

firm’s effort e are also observable to the government, as well as the more realistic case in which

neither is observable.3 In all cases, S is sufficiently large that the government always prefers

to complete the project. As a result, the contract t(C) must be such that the firm’s equilibrium

utility Uβ is greater than its outside option, which is normalized to zero. This is known as the

individual rationality constraint: Uβ ≥ 0 for all β ∈ [β , β̄].

2 Complete Information

Suppose first that government can observe the baseline cost β and the firm’s effort e. With

no information asymmetry between the government and the firm, the government can design

the contract t(C) to achieve the first-best outcome, or the allocation that would obtain if the

government had direct control of the firm. To see this, suppose that the government can directly

3Since C is observable, if one of β or e is observable then so is the other.
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choose the transfer t and costs C with knowledge of β:

max
t,C

S − (1+λ)C −ψ(β − C)−λt (2.1)

subject to

t −ψ(β − C)≥ 0.

It is clearly optimal to set t = ψ(β − C) to satisfy the individual rationality constraint while

avoiding any extra cost of public funds. Assuming an interior choice of C , the necessary and

sufficient first-order condition is then

ψ′(β − C) = 1

Withψ strictly convex, this condition can be inverted to find the unique first-best cost C∗.

A variety of different contracts t(C) can implement this first-best outcome. For example, the

government could simply set

t(C) =







ψ(β − C∗) if C = C∗,

−1 else.

In this case, the firm realizes negative utility unless it chooses the first-best cost C∗, perhaps

reflecting a threat by the government to shut down the firm. More realistically, the government

could also adopt the fixed-price contract

t(C) =ψ(β − C∗)− (C − C∗).

Here the firm receives the lump-sum payment C∗+ψ(β −C∗)> 0 and is the residual claimant

on any cost-savings that result from its own effort. This is a high-powered contract that provides

the firm the greatest incentives to achieve cost reductions through effort.4

Note a key feature of both of these contracts: The government must have perfect information

about the baseline cost β . A more realistic assumption in many (if not all) settings is that the

firm has more precise information about the cost of the project than the government. In the

next section, I adopt a Bayesian version of this assumption and explore the implications for the

government’s optimal contract t(C).

4Check for yourself that the solution to the firm’s problem (1.1) under this contract is the first-best cost C∗!
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3 Incomplete Information

Suppose now that the firm knows the baseline cost β , while the government only knows that

β is distributed according to a smooth distribution F on [β , β̄]. Effort e is also unobservable.

As before, the government must choose a potentially nonlinear contract t(C) to maximize

expected welfare E[W ], taking as given utility-maximizing behavior by the firm (1.1) and

the individual rationality constraint. The expectation is over the distribution F , capturing the

assumption that the government does not know the baseline cost of the firm.

Transforming the Problem. The government’s problem is exceptionally challenging as posed:

Choosing an general nonlinear contract t(C) to maximize expected welfare amounts to solv-

ing an infinite-dimensional optimization problem. To gain tractability, we can make use of

an observation in the contract theory literature known as the Revelation Principle (Myerson,

1981):

Proposition 1 (Revelation Principle). For any contract t(C), there exists a direct mechanism

{tβ , Cβ}β∈[β ,β̄] such that a firm of any type β chooses the same cost Cβ and receives the same trans-

fer tβ when confronted with the contract t(C) as when confronted with the menu {tβ , Cβ}β∈[β ,β̄].

The direct mechanism satisfies the incentive compatibility constraints

tβ −ψ(β − Cβ)≥ tβ ′ −ψ(β − Cβ ′) ∀β ,β ′ ∈ [β , β̄]. (3.1)

The proof is immediate: For any schedule t(C), we can simply forecast the cost Cβ chosen

by a firm with each baseline cost (or type) β , along with the resulting transfer tβ = t(Cβ).
Optimality requires that the choice made by a firm of type β must dominate the choice made

by a firm of any other type β ′, yielding the incentive compatibility conditions (3.1). So we

can equivalently formulate the government’s problem as an optimization problem over direct

mechanisms {tβ , Cβ}β that satisfy the incentive compatibility constraints (3.1). As we will see

below, under mild technical conditions any such direct mechanism is equivalent to the choice

of a nonlinear contract t(C). Thus the government’s problem is equivalent when formulated as

the choice of a contract or as the choice of an incentive-compatible direct mechanism.5

How do direct mechanisms aid tractability? When the distribution F is discrete, so that there

are only finitely many types β , the Revelation Principle offers a substantial simplification. In-

stead of choosing an infinite-dimensional contract t(C), the government can instead choose a

5This second step, moving from a direct mechanism back to a nonlinear contract, is called an implementation
problem.
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finite-dimensional direct mechanism {tβ , Cβ}β subject to the incentive compatibility constraints

(3.1). But I assume that F is smooth, so the government’s problem is still infinite-dimensional.

To make progress, we will assume that the direct mechanism {tβ , Cβ}β is twice continuously

differentiable in β , so that we can make use of first-order conditions to characterize the solution

to the firm’s problem.6

Under a direct mechanism {tβ , Cβ}β , a firm of type β chooses a type β̂ to report, exerts effort

to produce the corresponding cost Cβ̂ , and receives the corresponding transfer tβ̂ . The firm’s

problem (1.1) then becomes

Uβ = max
β̂∈[β ,β̄]

tβ̂ −ψ(β − Cβ̂). (3.2)

Given incentive compatibility, the optimal choice must be β̂ = β . The corresponding first-order

condition is

ṫβ = −ψ′(β − Cβ)Ċβ , (3.3)

where I use the ˙ notation to denote derivatives with respect to the report β̂ . In the appendix,

I show that the incentive compatibility conditions (3.1) imply that Ċβ ≥ 0, and that under this

restriction the first-order condition (3.3) is necessary and sufficient to characterize the solution

to the firm’s problem (3.2). As a result, we can replace the incentive-compatibility conditions

(3.1) with the first-order condition (3.3) and the monotonicity condition Ċβ ≥ 0.

For a final simplification, it will be convenient to reformulate the choice of a direct mechanism

{tβ , Cβ}β instead as the choice of {Uβ , Cβ}β , where the transfer tβ is implicitly defined by

Uβ = tβ −ψ(β −Cβ).7 In this case, the first-order condition (3.3) is equivalent to the envelope

condition

U̇β = −ψ′(β − Cβ). (3.4)

Note that this condition immediately implies that Uβ is decreasing, so the individual rational-

ity condition Uβ ≥ 0 binds only for the firm with the highest baseline cost β̄ . Given these

6All of what follows actually holds under weaker regularity conditions, at the cost of more technically chal-
lenging arguments.

7This is known as the “Mirrlees trick” after Mirrlees (1971).
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observations, we can reformulate the government’s problem as follows:

max
{Uβ ,Cβ }β

∫ β̄

β

�

S − (1+λ)(Cβ +ψ(β − Cβ))−λUβ
�

f (β)dβ (3.5)

subject to

U̇β = −ψ′(β − Cβ),

Ċβ ≥ 0,

Uβ̄ ≥ 0.

As stated, this is a finite-horizon optimal control problem with “time” variable β , state variable

Uβ , and control variable Cβ . The envelope condition (3.4) is the evolution equation for the

state variable Uβ . The condition Ċβ ≥ 0 is a pointwise constraint on the control variable.8 The

condition Uβ̄ ≥ 0 is a constraint on the terminal value of the state variable, which binds at the

optimum.

Solution. The solution to the government’s problem (3.5) can be characterized using the

Maximum Principle. For a simpler approach, we can go through a bit of algebra to drop Uβ
from the problem. Note first that the Fundamental Theorem of Calculus implies

Uβ = Uβ̄ +

∫ β̄

β

ψ′(β̃ − Cβ̃)dβ̃ .

Individual rationality requires that Uβ̄ = 0 at the optimum, so the expected rent given up by

the government equals

∫ β̄

β

Uβ f (β)dβ =

∫ β̄

β

∫ β̄

β

ψ′(β̃ − Cβ̃) f (β)dβ̃dβ

=

∫ β̄

β

∫ β̃

β

ψ′(β̃ − Cβ̃) f (β)dβdβ̃

=

∫ β̄

β

ψ′(β − Cβ)F(β)dβ .

8This is really a pointwise constraint on the derivative of the control variable, which must be handled differently.
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The second line follows by interchanging the order of integration. Substituting back into the

government’s objective yields

∫ β̄

β

�

S − (1+λ)(Cβ +ψ(β − Cβ))−λ
F(β)
f (β)

ψ′(β − Cβ)
�

f (β)dβ . (3.6)

We can solve the government’s problem (3.5) by maximizing this objective with respect to

Cβ , subject to the pointwise constraint Ċβ ≥ 0. Standard practice is to conjecture and verify

that this constraint is non-binding. If this holds, we can simply maximize the objective (3.6)

pointwise with no constraints on Cβ . The optimal choice of Cβ then satisfies the first-order

condition

0= −(1+λ)(1−ψ′(β − Cβ)) f (β) +λF(β)ψ′′(β − Cβ). (3.7)

Intuitively, increasing the cost Cβ reduces welfare directly (first term). But it also increases

welfare indirectly by reducing the information rents that must be paid to types with lower

baseline costs (second term). Provided that ψ′′′(e) ≥ 0, this condition is both necessary and

sufficient to determine the optimal cost Cβ .

To verify that the cost function Cβ is weakly increasing, we can implicitly differentiate the

first-order condition (3.7) to find

1− Ċβ = −
λψ′′(β − Cβ)

d
dβ

�

F(β)
f (β)

�

(1+λ)ψ′′(β − Cβ) +λ
F(β)
f (β)ψ

′′′(β − Cβ)

With ψ′′′(e) ≥ 0, we observe that a sufficient condition for monotonicity is for the distribution

F to satisfy the hazard rate condition:

d
dβ

F(β)
f (β)
≥ 0.

This condition is violated when f (β) is increasing relative to F(β) as β increases. In line with

the interpretation of the first-order condition (3.7), this would push the government to reduce

costs Cβ as β increases, because the direct effect of lower costs dominates the indirect effect of

greater information rents for more efficient types. In fact, under this condition the equilibrium

effort exerted by the firm β−Cβ is decreasing with β: A higher β not only increases the baseline

cost, but it also lowers the cost savings from effort.

The following proposition summarizes the solution to the government’s problem:
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Proposition 2. Suppose ψ′′′(e) ≥ 0 and F(β)/ f (β) is weakly. Then the government’s optimal

direct mechanism {tβ , Cβ}β uniquely satisfies

0= −(1+λ)(1−ψ′(β − Cβ)) f (β) +λF(β)ψ′′(β − Cβ),

Uβ =

∫ β̄

β

ψ′(β̃ − Cβ̃)dβ̃ ,

tβ = Uβ +ψ(β − Cβ).

Lessons for Regulation. The analysis above delivers a few concrete lessons for optimal reg-

ulation. To see this, note first that we can define a nonlinear contract t(C) to implement the

optimal direct mechanism by setting

t(Cβ)≡ tβ ∀β ∈ [β , β̄]. (3.8)

The contract t(C) is well-defined under the assumptions of Proposition 2, which ensure that

Cβ is strictly increasing in β .9 The shape of the contract t(C) determines the incentives facing

the firm, because it controls the firm’s private return to effort. Note first that the net transfer

paid to firm with the highest baseline cost is positive:

t(Cβ̄) =ψ(β̄ − Cβ̄).

This equation follows directly from Proposition 2. It holds because the individual rationality

constraint must bind for the highest-cost firm, so that this firm is just compensated for its effort.

By implicitly differentiating (3.8), we see that the net transfer increases as costs fall:

t ′(Cβ) =
ṫβ
Ċβ
= −ψ′(β − Cβ).

This increase goes beyond compensating a firm with lower baseline cost for its higher effort,

because Proposition 2 shows that each such firm earns a positive information rent Uβ > 0. A

key lesson from the analysis is that allowing some information rents to more efficient types

is necessary to incentivize them to exert effort; the size of these rents (and hence the effort

exerted) is limited because public funds are socially costly. For the firm with the lowest baseline

9We can set t negative outside of the image of Cβ to define t everywhere.
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cost, the first-order condition (3.7) implies that the firm faces first-best effort incentives:

1=ψ′(β − Cβ).

This holds because the government need not provide information rents to any firm with a

lower baseline cost. Finally, by differentiating t ′(Cβ) again we find that the optimal contract is

convex, so that the firm is rewarded with a larger transfer at an increasing rate as its realized

cost C falls:

t ′′(Cβ) = −ψ′′(β − Cβ)

�

1

Ċβ
− 1

�

.

Hence the contract t resembles a fixed-price contract for low costs C , smoothly reducing the

power of incentives to move closer to a cost-plus contract as costs increase.

Intuition. For a different intuition about the shape of the optimal contract t(C), suppose

we began by offering the firm a fixed-price contract of the firm t(C) = a − C . This contract

makes the firm the residual claimaint on any cost reductions achieved through effort, so the

firm always exerts the first-best amount of effort. To ensure individual rationality for all types,

we must choose a sufficiently large that the firm with the highest baseline cost β̄ attains zero

utility. But since this lump sum must also be delivered to more efficient types, it comes at a

relatively high (expected) cost of public funds: We could improve the contract by reducing the

lump-sum payment a but raising the transfer at high values of the cost C . This sacrifices some

incentives for cost reduction for inefficient types (who already choose high costs C) to save on

the social cost of a high lump-sum payment for all types. This adjustment lowers and “flattens”

the contract t(C), producing the shape described by Proposition 2. The optimal contract t(C)
is “more convex” for higher values of λ; it is exactly linear in the limit with no social cost of

public funds, λ= 0.
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A Technical Details

A.1 Monotonicity of Costs

Monotonicity of the costs Cβ in β arises twice in the analysis: First, incentive compatibil-

ity implies that Cβ is weakly increasing. Second, provided that Cβ is weakly increasing, the

first-order condition is both necessary and sufficient to characterize the solution to the firm’s

problem under a direct mechanism. Here I prove both of these facts.

IC⇒ Monotonicity. The incentive compatibility conditions for types β and β ′ > β are

tβ −ψ(β − Cβ)≥ tβ ′ −ψ(β − Cβ ′),

tβ ′ −ψ(β ′ − Cβ ′)≥ tβ −ψ(β ′ − Cβ).

Adding these two inequalities yields

ψ(β ′ − Cβ)−ψ(β − Cβ)≥ψ(β ′ − Cβ ′)−ψ(β − Cβ ′).

Since ψ is strictly convex, this inequality holds if and only if Cβ ′ ≥ Cβ . Hence Ċβ ≥ 0.

Monotonicity⇒ FOC Sufficiency. Fix types β and β ′ > β . Note the difference

tβ ′ −ψ(β ′ − Cβ ′)−
�

tβ −ψ(β ′ − Cβ)
�

=

∫ β ′

β

�

ṫβ̃ +ψ
′(β ′ − Cβ̃)Ċβ̃
�

dβ̃

=

∫ β ′

β

�

ψ′(β ′ − Cβ̃)−ψ
′(β̃ − Cβ̃)
�

Ċβ̃dβ̃

≥ 0.
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The first line holds by the Fundamental Theorem of Calculus, while the second line follows

from the first-order condition (3.3). The last line holds by the convexity of ψ, which implies

that the bracketed term in the integrand is positive, and the assumption that Cβ is weakly

increasing.

A.2 Monotonicity of Cβ

To verify that the cost function Cβ is weakly increasing, we implicitly differentiate the first-order

condition (3.7):

0= −(1+λ)(−ψ′′(β − Cβ)Ċβ) f (β) +λ
�

f (β)ψ′′(β − Cβ) + F(β)ψ′′′(β − Cβ)Ċβ
�

.

Simplifying, we get:

0= (1+λ)ψ′′(β − Cβ) f (β)Ċβ −λF(β)ψ′′′(β − Cβ)Ċβ .

Rearranging, we obtain:

Ċβ =
(1+λ)ψ′′(β − Cβ) f (β)

λF(β)ψ′′′(β − Cβ)
.

Since ψ′′′(e)≥ 0 and F(β)/ f (β) is weakly increasing, Ċβ ≥ 0.
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