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14.452 Recitation 3
NGM, Stochastic Growth, q-Theory

Todd Lensman

November 7, 2024

These slides build on work by past 14.452 TAs: Shinnosuke Kikuchi, Joel Flynn, Karthik Sastry,
Ernest Liu, Ludwig Straub, . . .



2

Plan for today

1. [Lecture] Calibration excercises with the NGM

2. Discrete-time NGM

▶ practice problem: comparative statics/dynamics

3. Stochastic growth (Brock-Mirman)

4. Continuous-time optimal control practice (q-theory)
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A motivating question

Brock and Mirman (JET, 1972)
“Optimal Economic Growth and Uncertainty: The Discounted Case”
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So far: dynamical system characterization

Good for seeing:

▶ Saddle-path behavior

▶ Transitional dynamics
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Comparative dynamics are mysterious

Even writing down this problem is
gross, which makes it hard to
contemplate deviations

What if we miss the future tax
rate’s path?

Dynamic programming approach
will make this more clear
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Discrete-Time Neoclassical Growth
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Basic structure

▶ Fixed labor lt = 1

▶ Investment technology:

kt+1 = (1− δ) kt + f (kt)− ct

▶ Assume f (·) is differentiable, strictly concave, strictly increasing, satisfies Inada

▶ Representative household with
∑∞

t=0 β
tu (ct)
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A planner’s problem

▶ Problem can be written as

max
{kt+1,ct}∞t=0

∞∑
t=0

βtu (ct)

s.t. : kt+1 = f (kt) + (1− δ) kt − ct , k0 > 0 given and kt ≥ 0

▶ Want to write this as stationary decision problem (why?)

▶ Trick 1: replace ct in the objective and reduce the choice variables to kt+1 only

▶ One state, one choice

▶ Trick 2: argue kt+1 ∈ G (kt) is compact-valued

▶ i.e., lies in some bounded set
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Bounded support for k

▶ Lower bound is 0 since kt ≥ 0

▶ Upper bound, take:
k : δk = f

(
k
)
.

Why?

▶ Suppose kt < k then:

k = f
(
k
)
+ (1− δ) k > f (kt) + (1− δ) kt = kt+1

so even consuming 0 we don’t surpass k if kt < k
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Bounded support for k

▶ Suppose now kt > k then:

kt+1 = f (kt) + (1− δ) kt = kt + f (kt)− δkt < kt

because f (kt)− δkt < 0 for kt > k

▶ So, even consuming 0, we don’t surpass kt if kt > k

▶ Thus we can take:

kt+1 ∈
î
0, k⃗
ó

k⃗ := f
(
max

{
kt , k

})
+ (1− δ)max

{
kt , k

}
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New, easier problem

▶ Thus, we can write the problem as:

V (k) = max
knext∈[0,k⃗]

u (f (k) + (1− δ) k − knext) + βV (knext)

▶ From 14.451 we know: knext = g (k) is continuous and strictly increasing and
using Euler + Envelope:

u′ (ct) = βV ′ (kt+1) = βu′ (ct+1)
[
f ′ (kt+1) + (1− δ)

]
and the TVC:

lim
t→∞

βt
[
f ′ (kt) + (1− δ)

]
u′ (ct) kt = 0
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Solving the model

▶ Steady state: k∗ = g (k∗)

▶ From Euler:

u′ (f (k∗) + (1− δ) k∗ − k∗)

= βu′ (f (k∗) + (1− δ) k∗ − k∗)
[
f ′ (k∗) + (1− δ)

]
or

1 = β
[
f ′ (kt) + (1− δ)

]
▶ Since f (·) is strictly concave, this condition defines k∗ uniquely.
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Stability

▶ Is the steady state globally stable? Yes

▶ Transitional Dynamics: Suppose kt < k∗. Then

kt < k∗

g (kt) < g (k∗)

kt+1 < k∗
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Stability

▶ Do we know capital is going up when k < k∗?

▶ Suppose (contradiction!) kt+1 < kt :

u′ (f (kt) + (1− δ) kt − kt+1) = βV ′ (kt+1)

> βV ′ (kt)

= β
[
f ′ (kt) + (1− δ)

]
× u′ (f (kt) + (1− δ) kt − kt+1)

> u′ (f (kt) + (1− δ) kt − kt+1)

where we used that V ′ (·) is strictly decreasing and β [f ′ (kt) + (1− δ)] > 1 for
kt < k∗
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Stability

▶ Thus, if kt < k∗ we have kt+1 ∈ (kt , k
∗)

▶ Same ideas if kt > k∗

▶ Thus, suppose k0 ∈ (0, k∗), we have an increasing sequence kt+1 = g (kt) which
is bounded above by k∗. Hence, it converges. Since there is a unique positive
steady state the limit is k∗.
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Turning to CE

▶ Now, focus in competitive equilibrium (CE) and show both coincide, so steady
state and transitional dynamics we derived also work for the CE

▶ Ultimately, not surprising since conditions for 1st and 2nd Welfare Theorems
satisfied
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HH problem

The rep. household solves:

max
{at+1,ct}∞t=0

∞∑
t=0

βtu (ct)

s.t. :

{
at+1 = (1 + rt) at + wt − ct , a0 > 0 given

limt→∞ at
Ä∏t−1

s=1
1

1+rs

ä
≥ 0.
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Shortcut to solution

▶ From 14.451 we know solution is characterized by:

u′ (ct) = β (1 + rt+1) u
′ (ct+1)

and TVC:
lim
t→∞

βtu′ (ct) (1 + rt) at = 0
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Thinking about the TVC

▶ Note that using the Euler equation we can rewrite TVC as:

lim
t→∞

βtu′ (ct) (1 + rt) at = 0

lim
t→∞

βtu′ (ct−1)
1

β (1 + rt)
(1 + rt) at = 0

lim
t→∞

βt−1u′ (ct−1) at = 0

lim
t→∞

βt−1u′ (ct−2)
1

β (1 + rt−1)
at = 0

lim
t→∞

βt−3u′ (ct−3)
1

(1 + rt−2)

1

(1 + rt−1)
at = 0

...

lim
t→∞

u′ (c0)
1

(1 + r1)
...

1

(1 + rt−1)
at = 0
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Thinking about the TVC

▶ And thus:

lim
t→∞

u′ (c0)

(
t−1∏
s=1

1

(1 + rs)

)
at = 0

u′ (c0) lim
t→∞

(
t−1∏
s=1

1

(1 + rs)

)
at = 0

lim
t→∞

(
t−1∏
s=1

1

(1 + rs)

)
at = 0

which is a stronger version of the No-Ponzi condition
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Plugging in prices

▶ Now, we know in the CE rt = f
′
(kt)− δ

▶ So the Euler equation becomes:

u′ (ct) = β (1 + rt+1) u
′ (ct+1)

u′ (ct) = β
(
1 + f ′ (kt+1)− δ

)
u′ (ct+1)

which is the same Euler equation from the Optimal Growth Problem!
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Same TVC?

▶ Finally we want to check that the TVC of the CE is the same as the one in the
Optimal Growth Problem (OGP)

▶ In the OGP we had:

lim
t→∞

βt
[
f ′ (kt) + (1− δ)

]
u′ (ct) kt = 0.

▶ In the CE we have:

lim
t→∞

βt [1 + rt ] u
′ (ct) at = 0

lim
t→∞

βt
î
f
′
(kt) + (1− δ)

ó
u′ (ct) kt = 0

where we used that in the CE at = kt and rt = f
′
(kt)− δ



23

Precise equivalence

▶ Since the CE path coincides with the OGP one, we know that starting from any
k0 > 0 the CE path converges monotonically to the unique steady state

▶ Note that the No-Ponzi condition:

lim
t→∞

at

(
t−1∏
s=1

1

1 + rs

)
≥ 0

ensures that the Arrow-Debreu CE coincides with the sequential trading one

why



24

NGM Practice Problem
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Practice problem

▶ Standard neoclassical growth model in discrete time t ∈ {0, 1, . . .}, n = 0, L = 1

▶ Twist: government pays subsidy χ > 0 per unit of capital rented by firm

▶ Firm’s problem:
max
K ,L

F (K , L)− wtL− (1− χ)rtL

▶ Subsidy financed by lump-sum tax on households τt .

Budget constraint:

ct + kt+1 = wt + rtkt + (1− δ)kt − τt , χrtkt = τt

▶ Household preferences: u(c) = c1−θ−1
1−θ
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Deriving equilibrium conditions
▶ Let’s derive the equilibrium conditions and compare to the “standard” equilibrium

conditions

▶ Given rt+1, Euler equation:
c−θ
t

c−θ
t+1

= β [1 + rt+1 − δ]

In equilibrium, rt+1 = f ′(kt+1)/(1− χ). Substitute:

c−θ
t

c−θ
t+1

= β

ï
1 +

f ′(kt+1)

1− χ
− δ

ò
▶ Budget constraint, using the zero-profit condition f (kt) = wt + (1− χ)rtkt :

ct + kt+1 = f (kt) + (1− δ)kt

▶ Standard equilibrium conditions:

c−θ
t

c−θ
t+1

= β
[
1 + f ′(kt+1)− δ

]
ct + kt+1 = f (kt) + (1− δ)kt
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Steady state

▶ How does χ affect the steady state? Can k∗ exceed the golden rule level of the
capital stock?

▶ Steady state conditions:

1 = β

ï
1 +

f ′(k∗)

1− χ
− δ

ò
c∗ = f (k∗)− δk∗

▶ Suppose initial steady state k∗ < kgold , where kgold maximizes f (k)− δk

Three cases:

1. χ is so small that the new steady state k∗1 < kgold , so that c∗ increases

2. χ is not so small that the new steady state k∗2 > kgold , but not so big that c∗

increases

3. χ is so big that the new steady state k∗3 > kgold and c∗ decreases
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c∗

k∗
k∗

Initial

k∗1

Case 1

kgold k∗2

Case 2

k∗3

Case 3

cgold
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Comparative dynamics

▶ Suppose the economy is initially at steady state, but χ unexpectedly removed at
t = 0

▶ In continuous-time model, how does the economy transition?

▶ Initial equilibrium system

ċ

c
=

1

θ

ï
f ′(k)

1− χ
− δ − ρ

ò
k̇ = f (k)− δk − c

▶ With χ → 0, ċ = 0 locus shifts to the left

▶ Need initial “jump” to stable arm of new equilibrium system with χ = 0
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c

k
kold

ċ = 0 with χ > 0

knew

ċ = 0 with χ = 0

P

R

Q
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Stochastic Growth with Brock-Mirman



32

Same model with random TFP

▶ Production
Yt

L
= y = f (At , kt)

▶ Let At ∈ A = {A(0), . . . ,A(N)} be some discrete-valued, N +1 state Markov chain

▶ Ordered: f (A(j+1), k) ≥ f (A(j), k) for 0 ≤ j ≤ N − 1 and all k

▶ e.g., f (A, k) = A · f̃ (k)

What are we modeling here?

▶ Brock and Mirman:

We introduce . . . a random element in the production function. This random
variable might also be thought of as an observation error on the capital stock

Kind of behavioral?

▶ Kydland and Prescott (ECMA, 1982): the business cycle?
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A New Problem

▶ Claim: new optimal growth problem is

V (k ,A) = max
knext∈[0,k̄]

u (f (A, k) + (1− δ) k − knext) + βE[V (knext ,Anext)]

New features:

▶ k depends on current A

▶ Need to average over possible A in next period

But easy to show: problem is still concave and compact
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Characterizing the solution
▶ Appeal to 14.451 logic to figure out that

▶ V (k , z) exists, is unique, is concave in k

▶ After establishing previous, optimal policy function

knext =: g(k,A)

exists and is strictly increasing in both arguments

▶ Some hope for answering our original question, which was (roughly):

When are we sure something sensible will happen in the limit?

▶ We already know how to “simulate” from this model. Draw sequence (A0,A1, . . .)
then calculate

k1 = g(k0,A0), k2 = g(k1,A1), . . .

but not when this has interpretable long-run behavior
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“Results”

▶ Brock and Mirman is in JET so they figure this out elegantly

▶ Perhaps easier, for us, to specialize to a celebrated simple case:

y = Akα δ = 1

in which case policy is

knext = g(k ,A) = A · αβ · kα

▶ and phrase the result roughly:

When At doesn’t move around like crazy, neither will k in the limit

▶ Methodologically: can also think about random sequences of taxes, population
draws, depreciation rates, . . . , as additional state variables in DP formulation
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Optimal Control Practice: q-Theory
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Setting

▶ A price-taking firm is trying to maximize the PDV of its profits

▶ Big twist from baseline NGM: adjustment costs

▶ The firm is subject to adjustment costs ϕ(I (t)) when it changes its capital stock
K (t)

max
[K(t),I (t)]∞t=0

∫ ∞

0
exp (−rt) [f (K (t))− I (t)− ϕ(I (t))]dt

subject to
K̇t = I (t)− δK (t), K (t) ≥ 0

▶ ϕ(I ): strictly increasing, continuously differentiable, strictly convex
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Hamiltonian

Firm’s Hamiltonian

Ĥ(K , I , q) ≡ [f (K (t))− I (t)− ϕ(I (t))] + q(t)[I (t)− δK (t)]

▶ q(t): costate variable (µ(t) before)

Necessary conditions for an interior solution?1

ĤI (K , I , q) = −1− ϕ′(I (t)) + q(t) = 0 (1)

ĤK (K , I , q) = f ′(K (t))− δq(t) = rq(t)− q̇(t) (2)

lim
t→∞

exp (−rt) q(t)K (t) = 0 (3)

1Sufficiency is easy to show. See p270 of Ch.7 of Daron’s textbook



39

Roles of Adjustment Cost

Equation (1) implies

q(t) = 1 + ϕ′(I (t)) =⇒ q̇(t) = ϕ′′(I (t))İ (t)

Substituting this into Equation (2), we have the law of motion for I (t)

İ (t) =
1

ϕ′′(I (t))
[(r + δ)(1 + ϕ′(I (t)))− f ′(K (t))]

Intuition for ϕ′′(I (t))?

▶ If ϕ′′(I (t)) = 0 (close to linear adj. cost), investment jumps (no smoothing)

▶ If ϕ′′(I (t)) > 0 (convex cost), investment adjustment is slow
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Dynamics in Equations

Two ODEs

K̇t = I (t)− δK (t), K (t) ≥ 0, some K (0) > 0

İ (t) =
1

ϕ′′(I (t))
[(r + δ)(1 + ϕ′(I (t)))− f ′(K (t))]

Steady state?

I ∗ = δK ∗

f ′(K ∗) = (r + δ)(1 + ϕ′(δK ∗))
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Dynamics in Phase Diagram
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Tobin’s q

▶ James Tobin said that the measure of value of the investment to the firm is

▶ the value of an extra unit of capital to the firm divided by its replacement cost

▶ ... when the ratio is high, the firm wants to investment more

▶ ... in the steady state, the ratio is 1 or close to 1

▶ In the model, (marginal) Tobin’s q is

q(t) = V ′(K (t)) (4)

▶ In the steady state

q∗ =
f ′(K ∗)

r + δ
= 1 + ϕ′(δK ) (5)
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Tobin’s q in the data

2

2Source: Yahoo Finance
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Comments

Issues

▶ Marginal q (model) v.s. average q (in practice)

▶ Does not contain important information (irreversibilities etc)

Some papers

▶ Hayashi, F. (1982). Tobin’s marginal q and average q: A neoclassical
interpretation. Econometrica: Journal of the Econometric Society, 213-224.

▶ Lang, L. H., Stulz, R., & Walkling, R. A. (1989). Managerial performance,
Tobin’s Q, and the gains from successful tender offers. Journal of financial
Economics, 24(1), 137-154.

▶ Andrei, D., Mann, W., & Moyen, N. (2019). Why did the q theory of investment
start working?. Journal of Financial Economics, 133(2), 251-272.
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Questions?
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Appendix
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Lifetime budget as Arrow-Debreu

back

▶ To see this, take at+1 = (1 + rt) at + wt − ct and multiply both sides byÄ∏t
s=0

1
(1+rs)

ä
and sum over

∑T−1
t=0 to get:

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
at+1

=
T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
(1 + rt) at +

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
[wt − ct ]
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Lifetime budget as Arrow-Debreu

▶ Now, note that

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
at+1 −

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
(1 + rt) at

=
T−1∏
s=0

1

(1 + rs)
aT − a0
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Lifetime budget as Arrow-Debreu

▶ Then, going back to our original equation:

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
[wt − ct ] =

T−1∏
s=0

1

(1 + rs)
aT − a0

lim
T→∞

T−1∑
t=0

(
t∏

s=0

1

(1 + rs)

)
[wt − ct ] + a0 = lim

T→∞

T−1∏
s=0

1

(1 + rs)
aT ≥ 0

∞∑
t=0

(
t∏

s=0

1

(1 + rs)

)
wt + a0 ≥

∞∑
t=0

(
t∏

s=0

1

(1 + rs)

)
ct

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
wt + (1 + r0) a0 ≥

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
ct

which is exactly the budget constraint in the Arrow-Debreu CE
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Lifetime budget as AD

▶ Note that conceptually:

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
wt + (1 + r0) a0 ≥

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
ct

(Human Wealth at t = 0) + (Financial Wealth at t = 0)

≥ (NPV of Consumption at t = 0) .

▶ Since u (·) is strictly inc. we know in eq we will have:

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
wt + (1 + r0) a0 =

∞∑
t=0

(
t∏

s=1

1

(1 + rs)

)
ct

which is also what the TVC of the sequential Eq told us
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