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Recitation Plan: Solve the canoncial overlapping generations model.

1 Setup

Consider the two-period canonical overlapping generations model with log preferences

log (c1 (t)) + β log (c2 (t + 1))

for each individual. Suppose that there is population growth at the rate n. Individuals work

only when they are young, and supply one unit of labor inelastically. The production technology

is given by

Y (t) = A(t)K (t)α L (t)1−α ,

where A(t + 1) = (1+ g)A(t), with A(0)> 0 and g > 0.

2 Solution

Part 1. Define a competitive equilibrium and the steady-state equilibrium.

Solution: A competitive equilibrium is an allocation [c1(t), c2(t), K(t)]t≥0 and prices [R(t), w(t)]t≥0

such that

(i) the consumption values c1(t) and c2(t +1) are determined by the solution to generation

t ’s optimization problem, taking w(t) and R(t + 1) as given:

max
c1(t),c2(t+1)

log (c1(t)) + β log (c2(t + 1)) s.t. c1(t) +
c2(t + 1)
R(t + 1)

≤ w(t),

and c2(0) = R(0)K(0);
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(ii) prices R(t) and w(t) are given by the representative firm’s optimality conditions

R(t) = FK(K(t), L(t)) and w(t) = FL(K(t), L(t));

(iii) capital accumulates according to K(t + 1) = S(t), where S(t) = L(t)(w(t)− c1(t)), with

K(0)> 0 given.

A steady-state equilibrium is a competitive equilibrium in which output Y (t), capital K(t), and

total consumption C(t) = c1(t)L(t) + c2(t)L(t − 1) all grow at constant rates.

Part 2. Can you apply the First Welfare Theorem to this competitive equilibrium?

Solution: Not necessarily – see the discussion below.

Part 3. Characterize the steady-state equilibrium and show that it is globally asymptotically

stable.

Solution: Begin by writing generation t ’s problem as an optimization problem over savings

s(t) = w(t)− c1(t):

max
s(t)∈[0,w(t)]

log (w(t)− s(t)) + β log (R(t + 1)s(t)) .

The solution implies that the household saves a constant fraction of its income (wealth), re-

gardless of the interest rate R(t + 1):

s(t) =
β

1+ β
w(t).

This owes to the assumption of log preferences, which are equivalently Cobb-Douglas prefer-

ences over consumption when young and when old (take the exponential of the household’s

objective function to see this). Aggregating over generation t households to arrive at aggregate

savings S(t), we can use the capital accumulation equation to find

K(t + 1) = S(t) =
β

1+ β
L(t)w(t).

Using the firm’s optimality condition, we can substitute for the wage:

K(t + 1) =
β

1+ β
(1−α)A(t)K(t)αL(t)1−α
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Note that with Cobb-Douglas production, the wage bill L(t)w(t) is just a fraction 1 − α of

total output Y (t). The capital accumulation equation above is a non-autonomous first-order

difference equation in capital: Given K(t), it tells us how to calculate K(t + 1), but this cal-

culation is time-varying because both L(t) and A(t) are growing. As in the Solow and neo-

classical growth models, to characterize the steady-state we can attempt to write the capital

accumulation equation as an autonomous first-order difference equation in a “detrended” or

“normalized” capital-like variable. Start by dividing both sides by L(t), using the assumption

that L(t + 1) = (1+ n)L(t):

K(t + 1)
L(t + 1)

=
1−α
1+ n

β

1+ β
A(t)
�

K(t)
L(t)

�α

.

This is a first-order difference equation in the capital-labor ratio K(t)/L(t), but it is again non-

autonomous when there is technological progress (g > 0). We can perform the same “trick”

again but with A(t) by writing A(t) = A(t)
1

1−α−
α

1−α and dividing each side by A(t)
1

1−α :

K(t + 1)

A(t + 1)
1

1−α L(t + 1)
=

1

(1+ g)
1

1−α

1−α
1+ n

β

1+ β

�

K(t)

A(t)
1

1−α L(t)

�α

.

Here we also used the assumption that A(t+1) = (1+ g)A(t). We then arrive at an autonomous

first-order difference equation in the capital-effective labor ratio k̃(t) = K(t)/A(t)
1

1−α L(t). Why

does the technology shock A(t) enter with the exponent 1
1−α? With Cobb-Douglas production,

a Hicks-neutral shock A(t) has precisely the same effect on the production technology as the

labor-augment shock A(t)
1

1−α . Uzawa’s Theorem tells us that in any balanced growth path the

capital stock must grow at the same rate as effective labor, which in this model is given by

A(t)
1

1−α L(t). So it makes sense to choose this as a normalizing variable for the capital stock

– and we know that it is the right choice because the capital accumulation equation becomes

autonomous (i.e., stationary) when we do this.

To characterize the steady-state, we write the difference equation in terms of k̃(t):

k̃(t + 1) =
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃(t)α.

Any steady-state k̃∗ must satisfy this equation with k̃(t + 1) = k̃(t) = k̃∗. The unique non-zero

steady state is then

k̃∗ =

�

1

(1+ g)
1

1−α

1−α
1+ n

β

1+ β

�
1

1−α

.
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In this steady state, capital, output, and total consumption all grow at the same constant

rate:

K(t) = k̃∗A(t)
1

1−α L(t)

= (1+ g)
1

1−α (1+ n)K(t − 1),

Y (t) =
�

k̃∗
�α

A(t)
1

1−α L(t)

= (1+ g)
1

1−α (1+ n)Y (t − 1),

C(t) = Y (t)− K(t + 1)

= Y (t)− (1+ g)
1

1−α (1+ n)K(t)

=
�

1− (1+ g)
1

1−α (1+ n)
�

k̃∗
�1−α�

Y (t).

In particular, all “per capita” variables (Y (t)/L(t), K(t)/L(t), . . . ) grow at the constant rate

(1+g)
1

1−α . The wage similarly grows at the rate (1+g)
1

1−α , and the interest rate is constant:

w(t) = (1−α)A(t)
�

K(t)
L(t)

�α

= (1−α)
�

k̃∗
�α

A(t)
1

1−α ,

R(t) = αA(t)
�

L(t)
K(t)

�1−α

= α
�

k̃∗
�−(1−α)

The steady state is globally stable provided that k̃(t) → k̃∗ given any starting value k̃(0). To

show this, we can prove the stronger result that k̃(t) converges monotonically to k̃∗: If k̃(0) <
k̃∗, k̃(t) increases at each t and converges to k̃∗, but if k̃(0)> k̃∗, k̃(t) decreases at each t and

converges to k̃∗. I prove this just when k̃(0) < k̃∗, because the argument is identical for the

case with high initial capital. Write the difference equation for k̃ as

k̃(t + 1) = G
�

k̃(t)
�

, where G
�

k̃
�

=
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃α.

The function G is strictly increasing, and k̃∗ is the unique non-zero solution to the equation

k̃ = G
�

k̃
�

. With k̃(t)< k̃∗, these facts immediately imply

k̃(t + 1) = G
�

k̃(t)
�

< G
�

k̃∗
�

= k̃∗.

Hence the capital-labor ratio is always bounded above by the steady-state value k̃∗. Moreover,

the capital-labor ratio k̃(t) is increasing over time:

k̃(t + 1)> k̃(t) ⇐⇒ G
�

k̃(t)
�

> k̃(t) ⇐⇒ k̃(t)< k̃∗.
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The final implication holds by direct calculation. Since k̃(t) is strictly increasing and bounded

above by the unique fixed point k̃∗ of G, we conclude that k̃(t) ↑ k̃∗. Repeating the same

argument for k̃(0)> k̃∗, we conclude that the steady-state equilibrium is globally stable.

Part 4. What is the effect of an increase in g on the equilibrium path?

Solution: An increase in g raises output per capita, the capital-labor ratio, consumption per

capital, the wage, and the interest rate at each time t – not just in the steady state. To see this,

recall from above the capital-labor ratio statisfies the non-autonomous first-order difference

equation

K(t + 1)
L(t + 1)

=
1−α
1+ n

β

1+ β
A(t)
�

K(t)
L(t)

�α

.

An increase in g raises A(t) at each time t > 0. Since K(0)/L(0) is fixed and the right side of

this equation is increasing in K(t)/L(t) and A(t), we immediately observe that an increase in

g raises K(t)/L(t) at each time t > 0. This immediately implies the corresponding result for

output per capita when we note

Y (t)
L(t)

= A(t)
�

K(t)
L(t)

�α

.

The wage and interest rate satisfy

w(t) = (1−α)A(t)
�

K(t)
L(t)

�α

,

R(t) = α

�

A(t)
1

1−α L(t)
K(t)

�1−α

.

The same argument as above implies that w(t) is increasing in g at each time t > 0. To

determine the comparative static for the interest rate R(t), recall that the capital-effective labor

ratio satisfies the autonomous first-order difference equation

k̃(t + 1) =
1

(1+ g)
1

1−α

1
1+ n

β

1+ β
(1−α) k̃(t)α.

The right side of this equation is decreasing in g and increasing in k̃(t), and the initial value

k̃(0) is fixed. These facts immediately imply that k̃(t) is decreasing in g at each time t > 0.

But since the interest rate is given by R(t) = αk̃(t)−(1−α), we observe that the interest rate at

each time t > 0 is increasing in g. Finally, note that since both the wage w(t) and the interest

5



rate R(t + 1) are increasing in g, consumption for generation t while young c1(t) and while

old c2(t + 1) must both be increasing in g.

Part 5. In the rest of the question, assume that g = 0. Suppose that the equilibrium involves

r∗ < n. Explain why the equilibrium is referred to as “dynamically inefficient” in this case.

Show that an unfunded Social Security system can increase the welfare of all future genera-

tions.

Solution: When r∗ = R∗ − 1 < n, the equilibrium is “dynamically inefficient” because the

steady-state or limiting capital stock exceeds the golden rule capital stock that maximizes

steady-state consumption. Intuitively, the equilibrium overaccumulates capital when r∗ < n,

and reducing the capital stock (equivalently, the quantity of savings) at each date would allow

for an increase in consumption at each date. This implies that the equilibrium is not Pareto

optimal, and we will provide a constructive proof to show that there are alternative allocations

that strictly increase the welfare of all generations.

We proceed by introducing an unfunded Social Security system to the economy, which consists

of a tax d on each generation while young and a corresponding transfer (1+ n) d to each

generation while old. Since the population of each generation grows at rate n, this amounts to

a mandatory transfer from young to old at each time t. I will show that for d sufficiently small,

the equilibrium with the Social Security system Pareto dominates the equilibrium without the

Social Security system.

The optimization problem for generation t now becomes

max
s(t)∈[0,w(t)−d]

log (w(t)− d − s(t)) + β log (R(t + 1)s(t) + (1+ n)d) .

The interior first-order condition must be satisfied for d sufficiently small:

1
w(t)− d − s(t)

=
βR(t + 1)

R(t + 1)s(t) + (1+ n)d
.

Savings by generation t are then

s(t) =
β

1+ β
w(t)−

1
1+ β

�

β +
1+ n

R(t + 1)

�

d.

Note that with fixed prices w(t) and R(t + 1), savings are always smaller when d > 0 as each

household attempts to compensate for the lower consumption at t and the higher consumption

at t + 1 effected by the Social Security system. (But we have to see if this remains true in
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general equilibrium after prices adjust.) Aggregating across generation t households and using

the representative firm’s optimality conditions to substitute for the prices w(t) and R(t + 1),
we find that capital satisfies the non-autonomous first-order difference equation

K(t + 1) =
β

1+ β
(1−α)K(t)αL(t)1−α −

1
1+ β

�

β +
1+ n
α

�

K(t + 1)
L(t + 1)

�1−α�

d L(t)

Letting k(t) = K(t)/L(t) denote the capital-labor ratio, we can divide through by L(t) and

rearrange to find the autonomous first-order difference equation

(1+ n) (1+ β) k(t + 1) +
�

β +
1+ n
α

k(t + 1)1−α
�

d = β (1−α) k(t)α

The second term on the left side is the new term that arises with d > 0. Just as in the standard

OLG model, this difference equation fully characterizes the equilibrium with the Social Security

system: All quantities and prices at each time can be written as a function of the capital-labor

ratio k(t) and the (exogenous) number of workers L(t). However, when d > 0 we cannot

generally solve for k(t + 1) as a function of k(t) in closed form. But since the left side of this

equation is strictly increasing in k(t + 1), tends to zero as k(t + 1)→ 0, and tends to infinity

as k(t +1)→∞, there is still a unique solution k(t +1). To perform comparative statics with

respect to d, we write k(t, d) to emphasize the dependence of the sequence of capital-labor

ratios on d, and we write the difference equation in more compact form as

H (k(t + 1, d), d) = β (1−α) k(t, d)α.

We can implicitly differentiate with respect to d to find

kd(t + 1, d) =
β (1−α)αk(t, d)α−1kd(t, d)−Hd(k(t + 1, d), d)

Hk(k(t + 1, d), d)
.

I claim that this equation implies ∂ k(t + 1, d)/∂ d < 0. Since Hd > 0 and Hk > 0, this holds

provided that kd(t, d)< 0. But at t = 0, since k(0, d) = k(0) is exogenously fixed, this equation

reduces to

kd(1, d) = −
Hd(k(1, d), d)
Hk(k(1, d), d)

< 0.

By induction, we can conclude that kd(t + 1, d)< 0 for t ≥ 0.

Thus far, we have established that expanding the Social Security system (i.e., raising d) lowers

the capital-labor ratio at each time in the (unique) competitive equilibrium. How does this
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fact help us show that we can achieve a Pareto improvement by introducing the Social Security

system? The idea is that a small increase from d = 0 to d > 0 reduces the capital-labor ratio

at each time, and since the economy overaccumulates capital in the d = 0 equilibrium, this

adjustment could (and in fact will!) raise consumption at each time by reducing the overac-

cumulation. For our purposes, it will suffice to show that each generation’s budget constraint

slackens when we raise d marginally from d = 0 to d > 0. For arbitrary d > 0, generation t ’s

budget constraint is

c1(t)≤ w(t, d) +
�

1+ n
R(t + 1, d)

− 1
�

d −
c2(t + 1)

R(t + 1, d)
.

It suffices to show that, when c1(t) and c2(t + 1) take their steady-state equilibrium values

with d = 0, the right side of this inequality is increasing in d near d = 0. Recall that these

steady-state equilibrium values are given by

c∗1 = w∗ − s∗ = w∗ − (1+ n) k∗,

c∗2 = R∗ (1+ n) k∗.

The right-hand side (RHS) of the inequality above can then be written

RHS(t, d) = w(t, d) +
�

1+ n
R(t + 1, d)

− 1
�

d −
R∗ (1+ n) k∗

R(t + 1, d)

Differentiating with respect to d and evaluating at d = 0, we have

RHSd(t, 0) = wd(t, 0) +
1+ n

R∗
− 1+

(1+ n) k∗

R∗
Rd(t + 1,0),

where we used the identity R(t+1,0) = R∗. To calculate the derivatives wd(t, 0) and Rd(t+1, 0),
we make use of the equilibrium price conditions

w(t, d) = (1−α) k(t, d)α,

R(t + 1, d) = αk(t + 1, d)−(1−α).

Differentiating yields

wd(t, d) = α (1−α) k(t, d)−(1−α)kd(t, d),

Rd(t + 1, d) = −α (1−α) k(t + 1, d)−(2−α)kd(t + 1, d).
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We can then write

RHSd (t, 0) =
1+ n

R∗
− 1+α (1−α) (k∗)−(1−α)

�

kd(t, 0)−
1+ n

R∗
kd(t + 1, 0)
�

.

Our final observation is that the evolution equation for kd(t + 1,0) implies that kd(t + 1,0) <
kd(t, 0) for t ≥ 0. Intuitively, starting from the d = 0 steady-state capital-labor ratio k∗, in-

troducing the unfunded Social Security system d > 0 requires a reduction in the capital-labor

ratio at each time to reach the new and lower steady-state capital-labor ratio k∗(d). The capital-

labor ratio declines monotonically to k∗(d), so in response to the introduction of d > 0, the

capital-labor ratio at t + 1 must fall more than at t relative to the initial steady-state k∗. This

observation implies

RHSd (t, 0)>
1+ n

R∗
− 1+α (1−α) (k∗)−(1−α)

�

kd(t + 1, 0)−
1+ n

R∗
kd(t + 1, 0)
�

=
�

1−α (1−α) (k∗)−(1−α) kd(t + 1, 0)
�

�

1+ n
R∗
− 1
�

The first factor is positive since kd(t + 1, 0) < 0, and the second factor is positive since the

initial steady-state equilibrium is dynamically inefficient (1+ n > R∗). Hence RHSd(t, 0) > 0,

and since preferences are locally non-satiated, introducing a (small) unfunded Social Security

system must strictly raise welfare for each generation in equilibrium.1

Part 6. Show that if r∗ > n, then any unfunded Social Security system that increases the

welfare of the current old generation must reduce the welfare of some future generation.

Solution: In this case, we can directly apply the First Welfare Theorem with a countably infinite

number of households (see problem set solutions for details).

1Technically I’ve shown this only for generations t ≥ 0, but it is immediate that generation t = −1 (i.e., the
initial elderly who own the initial capital stock) strictly benefits from the new transfer of (1+ n)d per capita.
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