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Recitation Plan: Solve the Romer (1990) growth model with knowledge spillovers.

1 Setup

This model exists in continuous time t ∈ [0,∞) and consists of a representative household

with labor endowment L(t) = Lexp (nt), discount rate ρ > 0, and consumption utility u(c) =
c1−θ/ (1− θ ). A unique final good (and numeraire) is produced at each time t using the Cobb-

Douglas production technology

Y (t) =
1

1− β

�

∫ N(t)

0

x(ν, t)1−βdν

�

LE(t)
β ,

where LE(t) denotes the quantity of labor employed in final good production, x(ν, t) denotes

the quantity of intermediate good ν used in final good production, and N(t) denotes the num-

ber of intermediate varieties discovered up to time t. Each intermediate is produced using the

final good at marginal cost ψ> 0, and intermediates are assumed to depreciate completely at

each time.

Labor can also be used to conduct research and development (R&D) for the discovery of new

intermediate varieties. Given a quantity of labor input LR(t), the number of varieties increases

according to the evolution equation

Ṅ (t) = N(t)φηLR(t).

Here φ ≤ 1 controls the strength of knowledge spillovers across time: With φ > 0, greater

existing knowledge makes current researchers more productive in the discovery of new vari-

eties, and this effect is stronger when φ is larger. I restrict φ ≤ 1 so that we do not obtain

“explosive” growth even when LR(t) is constant over time. For reasons that will become clear

below, I refer to the case with φ = 1 as exhibiting dynamic constant returns to R&D, while the

case with φ < 1 exhibits dynamic decreasing returns to R&D.
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Labor is allocated between final good production and R&D according to profit-maximizing

behavior by two different kinds of firms. A representative final good producer chooses the

quantities of all inputs (x(ν, t) for ν ∈ [0, N(t)] and LE(t)) to maximize profits, taking the price

of each intermediate p(ν, t) and the wage w(t) as given. A large mass of firms also employ

labor to discover new intermediate varieties. Each of these “potential monopolists” can employ

one unit of labor to discover a new variety at rate N(t)φη.1 Aggregating across all potential

monopolists that employ labor, the total flow rate of new ideas is then Ṅ(t) = N(t)φηLR(t).
Potential monopolists find it optimal to employ labor for R&D provided that the value V (t) of

discovering a new variety at t dominates the cost of discovery. Equivalently, this holds when

the value of employing an additional unit of labor at wage w(t) is weakly smaller than the

value generated by that labor, which equals the flow rate of discovery N(t)φη times the value

V (t). In equilibrium, potential monopolists continue to enter until the wage w(t) is driven up

to this flow value N(t)φηV (t), so that we satisfy

N(t)φηV (t)≤ w(t) and LR(t)≥ 0,

with complementary slackness.

To complete the description of the model, we must determine the value V (t). I assume that

each monopolist that successfully invents a new intermediate variety ν receives a perpetual

patent on that variety. As a result, it can set its price p(ν, t) at each time t to maximize profits,

taking all remaining equilibrium objects except for the quantity x(ν, t) as given. Letting π(t)
denote the profits at each time t, and noting that π does not depend on ν because all existing

intermediates ν ∈ [0, N(t)] enter final production symmetrically and have the same marginal

cost ψ, the value V (t) must satisfy

V (t) =

∫ ∞

t

exp

�

−
∫ s

t

r(u)du

�

π(s)ds.

Here r(t) denotes the equilibrium interest rate at time t. The value of ownership of an inter-

mediate is then the present discounted value of all future profit flows, discounted to present

using the “market” discount rate r(t). Differentiating with respect to t implies that this value

also satisfies the Hamilton-Jacobi-Bellman (HJB) equation

r(t)V (t) = π(t) + V̇ (t).

1I write this as if each potential monopolist can only employ one unit of labor for R&D, but since the “production
technology for knowledge” Ṅ = NφηLR exhibits constant returns to scale in LR, it’s all the same if each potential
monopolist can employ any quantity of labor it wishes.
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This equation expresses the “arbitrage condition” that the instantaneous return to owning an

intermediate r(t)V (t) must equal the flow dividend π(t) plus any “capital gains” V̇ (t).

Finally, note that in this version of the Romer (1990) model, the household can “save” only

in a fairly implicit way. Just as in the neoclassical growth model, we allow the household

access to an asset A(t) that pays an instantaneous return r(t) at each time t and, from the

household’s perspective, allows it to transfer consumption across time. The household’s opti-

mal consumption stream can again be summarized by the Euler equation and the transversality

condition

ċ(t)
c(t)

=
1
θ
(r(t)−ρ) ,

0= lim
t→∞

exp

�

−
∫ t

0

r(s)ds

�

A(t).

But how does “saving” actually happen, and what is the asset A(t) since this model does not

have physical capital? In equilibrium, the household’s assets at each time t must be equal to the

value of all intermediate monopolists: A(t) = N(t)V (t). Intuitively, when the household wants

to transfer consumption into the future, the economy responds by reducing the quantity of labor

LE(t) employed in final good production and raising the quantity of labor LR(t) employed in

R&D. This raises the rate at which new intermediates are discovered and hence the “supply” of

assets N(t)V (t). As we will see below, this works to raise consumption in the future by making

labor more productive in producing the final good, which increases consumption (holding the

labor input fixed).

The way this works in equilibrium is as follows: Fix a path for per capita consumption [c(t)]t≥0,

and note that the interest rate r(t) is pinned down at each time by the household’s Euler equa-

tion. Suppose we temporarily increase the household’s desire for saving at time t (say, by

reducing ρ temporarily). This leads the household to demand more assets A(t), which places

downward pressure on the interest rate r(t). But this raises the discounted present value

V (t) of future profits earned by an intermediate monopolist, stimulating additional entry and

increasing the rate of production of new assets Ṅ(t).2 This can only happen if labor is reallo-

cated away from final good production and toward R&D, which reduces present consumption

in favor of future consumption.

2This explanation assumes that initially Ṅ(t) > 0. If we are instead in an equilibrium with no R&D, then the
interest rate is the only part of the equilibrium that adjusts to the increased propensity to save, ensuring that the
household finds it optimal to consume according to the original consumption path at each time. This adjustment
is just as in the Lucas asset pricing model, and I’m happy to explain further if helpful.
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2 Static Equilibrium Conditions

Before studying the dynamic equilibrium in this model, we can make some progress by studying

the static equilibrium conditions of the final good producer and the monopolists of existing

intermediates ν ∈ [0, N(t)]. Given the wage w(t) and the intermediate prices [p(ν, t)]N(t)
ν=0 ,

the final good producer chooses LE(t) and [x(ν, t)]N(t)
ν=0 to maximize profits. The first-order

optimality conditions are

w(t) = β
Y (t)
LE(t)

,

p(ν, t) = LE(t)
β x (ν, t)−β .

We will eventually use the first condition to determine the wage w(t). The second condition

defines the (inverse) demand curve observed by each intermediate monopolist ν. Given this

demand curve, the monopolist chooses the price p(ν, t) to maxmize its own profits at t:

max
p
(p−ψ) LE(t)p

−1/β .

The solution to this problem is

p (ν, t) =
1

1− β
ψ,

with corresponding quantity and profits

x(ν, t) = x̄ LE(t), where x̄ =
�

ψ

1− β

�− 1
β

π (t) = π̄LE(t), where π̄= β
�

ψ

1− β

�− 1−β
β

.

Total output then satisfies

Y (t) =
x̄1−β

1− β
N(t)LE(t),

so that the wage becomes

w(t) = β
Y (t)
LE(t)

= β
x̄1−β

1− β
N(t).
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Finally, total consumption is

C(t) = Y (t)−ψ
∫ N(t)

0

x(ν, t)dν

= Y (t)−ψ x̄N(t)LE(t)

=
�

1− (1− β)1+β
�

Y (t).

Note that the crucial feature of this model is that final output Y (t) is proportional to N(t)
and LE(t): N(t) acts like labor-augmenting technological progress, so provided that LE(t)
eventually settles to a constant value, we expect to achieve constant growth in output per

capita if N(t) increases at a constant rate.

3 Dynamic Constant Returns: φ = 1, n= 0

To characterize the equilibrium withφ = 1 and n= 0, I begin as usual by studying the balanced

growth path. Suppose an equilibrium in which output and consumption grow at the constant

rate g ≥ 0. The household’s Euler equation then implies that the interest rate is constant and

satisfies the standard “Ramsey formula”

r∗ = ρ + θ g.

There are two cases to consider: Either Ṅ(t) = 0 always, or Ṅ(t)> 0 at some time t. I consider

these cases in turn.

Case 1: Ṅ(t) ≡ 0. In this case, we must have LE(t) = L at each time t, so that the economy

permanently stagnates with output Y (t) = x̄1−β

1−β N(0)L, wage w(t) = β x̄1−β

1−β N(0), and interest

rate r∗ = ρ. To ensure that this is a valid equilibrium, we must only check that potential

monopolists find it weakly optimal not to conduct R&D. The value V (t) of an intermediate is

V (t) = π̄L/ρ, so that free entry with LR(t) = 0 requires

N(0)ηV (t)≤ w(0) ⇐⇒ ρ ≥ η (1− β) L.

Under this parameter restriction, the economy has a balanced growth path with Ṅ(t)≡ 0.

Case 2: Ṅ(t) > 0 at some t. In this case, we must have LR(t) > 0, so that the free-entry
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condition implies

N(t)ηV (t) = w(t)⇒ ηV (t) = β
x̄1−β

1− β
.

The implication follows from the characterization of the wage w(t) above. Hence V (t) = V ∗

is constant,3 and the HJB equation for V (t) implies

V ∗ =
π̄LE(t)

r∗
.

But then LE(t)must be constant, LE(t)≡ L∗E. This constant quantity of labor employed in final

good production and the growth rate g must satisfy the system of equations

L∗E = r∗
V ∗

π̄
=
ρ + θ g
η (1− β)

,

g =
Ṅ(t)
N(t)

= η
�

L − L∗E
�

.

The solution is

L∗E =
1
η

θηL +ρ
1− β + θ

,

g =
η (1− β) L −ρ

1− β + θ
.

To ensure that we have characterized a valid equilibrium, we must check that (i) the free-

entry condition is satisfied with g > 0 and (ii) r∗ > g, so that the equilibrium features finite

expected discounted output. The first condition holds provided that ρ < η(1− β)L, and the

second condition holds provided that

ρ > (1− θ ) g ⇐⇒ ρ >
η (1− θ ) (1− β) L

2− β

The analysis above provides a full characterization of the unique balanced growth path in this

economy. What about transitional dynamics? We shouldn’t expect any in this model, because

the economy does not have any “concave” features (like diminishing marginal returns to an

accumulating factor) that would yield sluggish adjustment to the balanced growth path. To

see this, suppose the balanced growth path features positive growth,and note that the free-

3Here I’m really assuming that Ṅ(t)> 0 on an interval or that Ṅ(t) is continuous, both of which are innocuous
along a balanced growth path.
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entry condition and Euler equations imply the following characterizations of the interest rate

r(t):

r(t) = ρ + θ

�

Ṅ(t)
N(t)

+
L̇E(t)
LE(t)

�

= ρ + θ

�

η (L − LE(t)) +
L̇E(t)
LE(t)

�

,

r(t) = η(1− β)LE(t).

These equations imply

LE(t)− L∗E =
1
η

θ

1− β + θ
L̇E(t)
LE(t)

When LE(t) is above its BGP value L∗E, this equation implies that the growth rate of LE(t) is

positive. If ever LE(t) > L∗E, the unique solution to this differential equation would feature

LE(t) → ∞, violating the labor market clearing condition LE(t) + LR(t) ≤ L. Similarly, if

ever LE(t) < L∗E, the solution would feature LE(t)→ 0, implying no consumption as t →∞
and violating the household’s transversality condition. We conclude that any equilibrium must

feature LE(t) = L∗E at all times t, so that we immediately follow the balanced growth path.

4 Dynamic Decreasing Returns: φ < 1, n> 0

Weakening knowledge spillovers by reducingφ below 1 has (surprisingly!) strong implications

for growth in this model. For example, if the number of workers allocated to R&D is held fixed,

it is easy to see that the growth rate of labor productivity will tend to zero over time:

Ṅ(t)
N(t)

= ηN(t)φ−1 LR→ 0,

where the limit holds since φ < 1.4 Conversely, when φ = 1, the growth rate of labor pro-

ductivity diverges if the number of workers allocated to R&D increases at a constant rate (e.g.,

because of population growth):

Ṅ(t)
N(t)

= ηLR(t)→∞.

4This is why I think of this case as encapsulating “dynamic decreasing returns”: The marginal improvement in
R&D productivity from additional knowledge accumulation decays over time.
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This is the essence of the scale effect in the model with φ = 1: The growth rate on the balanced

growth path is increasing in the quantity of labor L. As Jones (1995) discusses, this scale effect

is counterfactual across many countries and time periods, and that paper proposes a variation

of the Romer (1990) model with φ < 1 but n> 0 to remove it.

In a balanced growth path with a constant share of workers s allocated to R&D, it is straight-

forward to determine the growth rate g of labor productivity (or output per worker). Since

output per worker is proportional to N(t), g must satisfy

g =
Ṅ(t)
N(t)

= ηN(t)φ−1sL(t).

Log differentiating both sides implies

0=
L̇(t)
L(t)
− (1−φ)

Ṅ(t)
N(t)

= n− (1−φ) g ⇐⇒ g =
n

1−φ
.

Hence the long-run growth rate of output per worker is entirely determined by the growth rate

of the population and the extent of dynamic decreasing returns to knowledge accumulation φ.

Using similar arguments to those as in the φ = 1 case, it is straightforward to characterize the

remaining equilibrium objects along the balanced growth path when φ < 1.
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