Implications of Uncertainty for Optimal Policies

Todd Lensman Maxim Troshkin

November 2019

Overview

Mutual implications between:

· Optimal dynamic fiscal policy

(constrained-efficient, information and/or commitment friction)

Broader view of uncertainty

(risk + ambiguity/Knightian uncertainty, aversion to both)

Focal setting: dynamic Mirrlees with uncertainty about DGP

Motivation

Standard approaches:

risky future skills + agents & government certain about DGP

Drawbacks:

- 1. Difficult to find empirical support for DGP certainty
 - substantial uncertainty about macro and micro variables (Bloom 2014)
 - pre-tax income distributions change significantly, often (Piketty, Saez, Zucman 2018)
- 2. Conclusions sensitive to specifics of DGP, etc.
 - $\frac{1-F(\theta)}{\theta f(\theta)}$ drives top marginal labor tax rates 20 \leftrightarrow 65% (Golosov, Troshkin, Tsyvinski 2016)
- 3. Welfare costs of ignoring broader uncertainty

Motivation

Standard optimal policies:

- once-and-forever
- history-dependent, complex
- complete

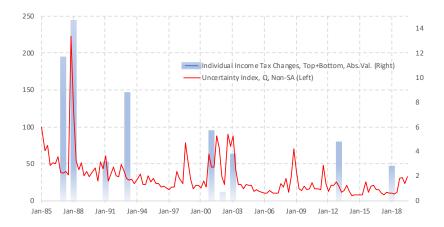
Commonly-observed policies:

- periodic reforms (especially income taxes)
- often ignore history, simplified
- incomplete (at least somewhat)

Without certainty, can these be optimal?

Can be achieved by competitive insurance markets?

Reforms vs. uncertainty:



Sources: IRS SOI and Baker, Bloom, Davis (2012)

Periodic reforms:

Source: IMF Tax Policy Reform Database and Amaglobeli et al. (2018)

Preview of results

Periodic reforms optimal

- uncertainty \approx "endogenous no-commitment"
- even with full commitment, information symmetry (extends to private skills, beliefs)

Loss of history dependence

gov't promise-keeping constraint slack after reform

Incomplete / simplified policies,

- $T < \infty$: no full backward induction for promise utility
- but: linear policies generically sub-optimal
- + Normative approach with meaningful role for social insurance
 - uncertainty + private info \Rightarrow CE not efficient

Related literature

- Optimal dynamic social insurance & redistribution
 - Standard dynamic settings: Kocherlakota (2010), Farhi Werning (2013), Golosov Troshkin Tsyvinski (2016)
 - Added frictions from labor mkt, human capital: Scheuer Werning (2016), Stantcheva (2017), Makris Pavan (2018)
 - Inability to commit by gov't: Farhi Sleet Werning Yeltekin (2012)
- Decentralization + crowding out private insurance
 - Golosov Tsyvinski (2007), Acemoglu Simsek (2012)
- · Relaxing assumption of certainty of DGP
 - Kocherlakota Phelan (2009): uncertain gov't, endowment shocks, public policies can't improve on CE
 - Bhandari (2015): risk sharing in Hansen Sargent (2001) setting
- Formalism: Epstein Schneider (2003), Hansen Sargent (2001), Bergemann Morris (2013)

Outline

- Model
- Periodic reforms

- Generalizations
 - more general beliefs, preferences
 - · private skills, beliefs
 - · lack of commitment by agents

• Inefficiency of CE

Model

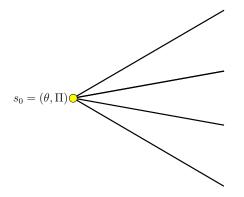
No intrinsic value, but easy to understand

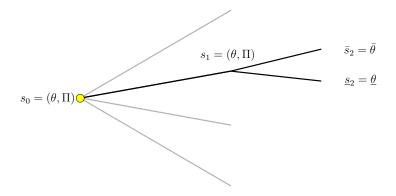
Paper's contribution: this extends to general optimal policies

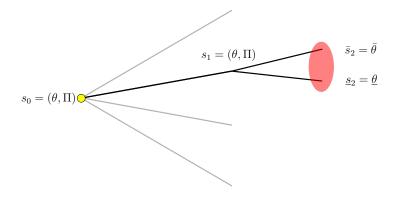
- Time: *t* = 0, 1, 2
- Agents: *i* = *A*, *B*
- Idiosyncratic shocks *s*_{*i*,*t*} : unknowable finite stochastic process
- $s_{i,t} \equiv (\theta_{i,t}, \Pi_{i,t+1})$:
 - skill $\theta_{i,t} \rightarrow$ effective labor $z_{i,t} = \theta_{i,t} l_{i,t}$
 - belief $\Pi_{i,t+1} \equiv$ set of distributions over s^{t+1}

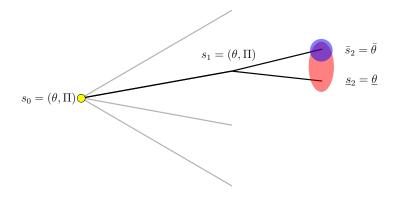
(agnostic about updating/learning: Π in *s* for convenience)

• Allocation: $C \equiv \{c_t(s^t), z_t(s^t), k_{t+1}(s^t)\}_{t=0, 1, 2}$









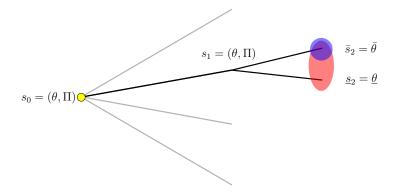
Aversion to risk, uncertainty

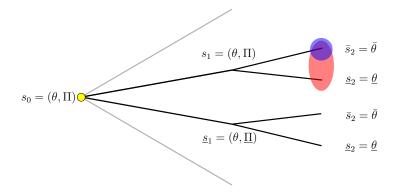
Assume recursive utility (does not have to be maxmin):

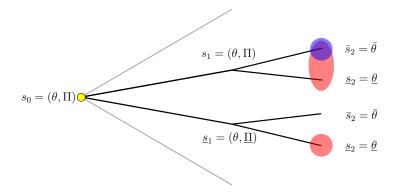
$$U_{i,t}\left(C|s^{t}\right) \equiv u\left(c_{i,t}\left(s^{t}\right), \frac{z_{i,t}\left(s^{t}\right)}{\theta_{i,t}}\right) + \beta \inf_{\Pi_{i,t+1}} \mathbb{E}_{\pi_{i,t+1}}\left[U_{i,t+1}\left(C|s^{t+1}\right)|s^{t}\right]$$

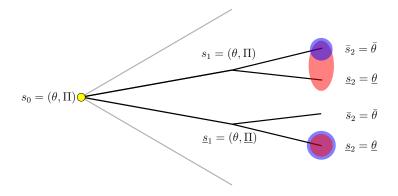
- $\pi_{i,t+1} \in \prod_{i,t+1}$
- axiomatization, recursive repr'n: Epstein-Schneider(2003)

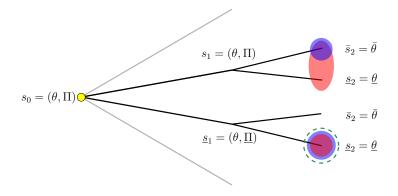
Results more general, e.g.: ... $sup_{\prod_{i,t+1}}\mathbb{E}_{\pi_{i,t+1}}[...]$











Assumption on beliefs: agree on feasible path

- · Obvious example economy's "worst" path
- For any belief $\pi_{i,t+1}$, there is $\underline{\pi}_{i,t+1}$:
 - same marginal distribution of θ
 - but marginal of Π has unit weight on $\underline{\Pi}$
- Notice:
 - · DGP not required to place weight on this path
 - any (heterogeneous) marginals of θ allowed
 - can be relaxed significantly

Periodic reforms

Government

(symmetric information, full commitment)

• C^* is efficient given Pareto weights η_i if

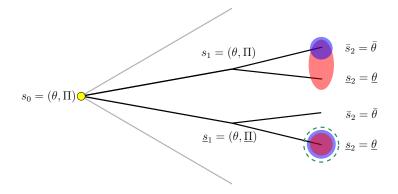
$$C^*(s_0) \in \arg\max_{C} \sum_{i} U_{i,0}(C|s_0) \eta_i$$

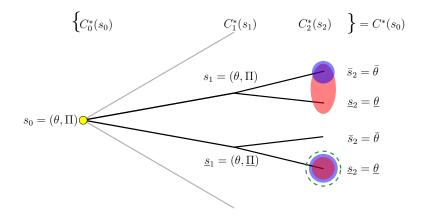
s.t. non-negativity and feasibility:

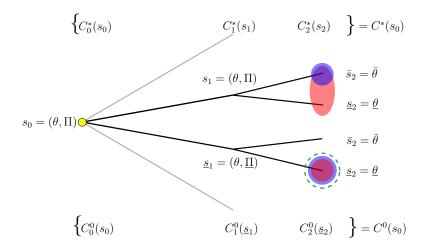
$$\sum_{i} c_{i,t} \left(s^{t} \right) + K_{t+1} \left(s^{t} \right) \leq f \left(K_{t} \left(s^{t-1} \right), Z_{t} \left(s^{t} \right) \right), \quad \forall t, s^{t} \geq s^{0}$$

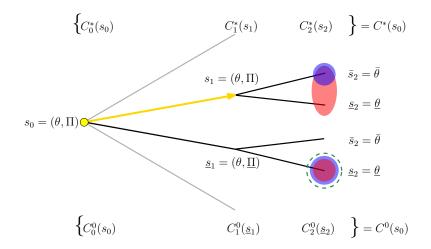
- · ex-post feasibility reflects (heterogeneous) uncertainty
- government knows no more than agents

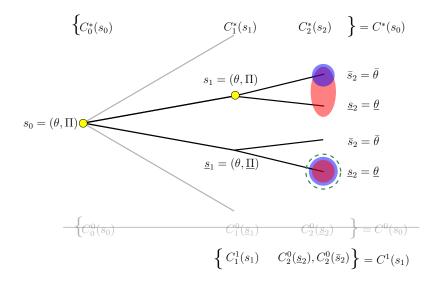
if certainty: C^* once-and-forever, history dependent, complex











Proposition (periodic reforms):

Given efficient C^* , there is sequence $\{C^t\}_{t=0}^T$, where $C^t = \{c_{\tau}^t, z_{\tau}^t, k_{\tau+1}^t\}_{\tau=t}^{t+1}$ are incomplete and

$$U_{i,0} \left(C^{0} \middle| s^{0} \right) = U_{i,0} \left(C^{*} \middle| s^{0} \right) \quad \forall i,$$
$$U_{i,0} \left(C^{0}_{0}, \left(C^{1}_{t} \right)^{T}_{t=1} \middle| s^{0} \right) \ge U_{i,0} \left(C^{0} \middle| s^{0} \right) \quad \forall i,$$
$$U_{i,1} \left(C^{1}_{1}, \left(C^{2}_{t} \right)^{T}_{t=2} \middle| s^{1} \right) \ge U_{i,1} \left(C^{1} \middle| s^{1} \right) \quad \forall i,$$

. . .

Mechanism:

- uncertainty aversion & sufficient belief overlap ⇒ need only t & worst-case t + 1
- when worst not realized \Rightarrow reform t + 1 & worst-case t + 2...
- generalization of incomplete contract ideas (e.g. Mukerji 1998, Zhu 2016)

Proof by constructing incomplete C^t

- Start $C_0^0 = C_0^*$, set C_1^0 to worst-case C_1^*
 - i.e. with $\underline{\Pi}_2$ (C^0 not fully state contingent, depends only on s^0 and θ_1)
- At t = 0, all agents : $C^* \sim C^0$
 - $\inf_{\Pi_{i,1}} \mathbb{E}_{\pi_{i,1}} \left[U_{i,1} \left(. \right) \right] s^{0}$ attains if $\pi_{i,1}$ puts all weight on $\underline{\Pi}_{2}$
 - sufficient belief overlap \Rightarrow such $\pi_{i,1}$ exist in $\Pi_{i,1}$
- At t = 1, if <u>Π</u>₂ not realized: C⁰₁ can be improved to C¹₁ & worst-case C¹₂, and so on..
 - C_1^0 still feasible
 - ...so acts like endogenous outside option (fallback)

Discussion

Simple algorithm for constructing optimal allocations

- if not $\underline{\Pi}$: reform will welfare-improve
- fallback: previous allocation C^{t-1} (form of endogenous lack of commitment)
- · dependence on history only via promise-keeping

Incomplete, simpler optimal policies

- lose history whenever reform Pareto-improves
 (e.g. whenever C^t can be constructed by backward induction)
- · limited dependence on future shocks, distributions

Optimal Reform Problem

Given previous policy C^{t-1} , reform to

$$C^{t}\left(s^{t}, C^{t-1}\right) \in \arg\max_{C^{t}} \sum_{i} U_{i,t}\left(C^{t} \middle| s^{t}\right) \eta_{i}$$

s.t. non-negativity, feasibility $\tau = t, t + 1, s^{\tau} \ge s^{t}$

$$\sum_{i} c_{i,\tau}^{t} \left(s^{\tau} \right) + K_{\tau+1}^{t} \left(s^{\tau} \right) \leq f \left(K_{\tau}^{\tau-1} \left(s^{\tau-1} \right), Z_{\tau}^{t} \left(s^{\tau} \right) \right),$$

and promise-keeping $\forall i$

$$U_{i,t-1}\left(C_{t-1}^{t-1}, \left(C_{\tau}^{t}\right)_{\tau=t}^{T} \middle| s^{t}\right) \geq U_{i,t-1}\left(C_{\tau}^{t-1} \middle| s^{t}\right)$$

 \rightarrow algorithm for simplified characterization/computation

Optimal Reform Problem

Given previous policy C^{t-1} , reform to

$$C^{t}\left(s^{t}, C^{t-1}\right) \in \arg\max_{C^{t}} \sum_{i} U_{i, t}\left(C^{t} \middle| s^{t}\right) \eta_{i}$$

s.t. non-negativity, feasibility $\tau = t, t + 1, s^{\tau} \ge s^{t}$

$$\sum_{i} c_{i,\tau}^{t} \left(s^{\tau} \right) + K_{\tau+1}^{t} \left(s^{\tau} \right) \leq f \left(K_{\tau}^{\tau-1} \left(s^{\tau-1} \right), Z_{\tau}^{t} \left(s^{\tau} \right) \right),$$

and promise-keeping $\forall i$

$$U_{i,t-1}\left(C_{t-1}^{t-1}, \left(C_{\tau}^{t}\right)_{\tau=t}^{T} \middle| s^{t}\right) \geq U_{i,t-1}\left(C_{\tau}^{t-1} \middle| s^{t}\right)$$

 \rightarrow algorithm for simplified characterization/computation

Dynamic consistency?

Preferences dynamically consistent in natural sense :

• If C, \tilde{C} coincide at t and for all $s^{t+1} \ge s^t$

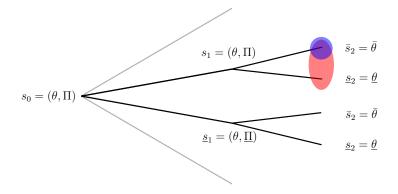
$$U_{i,t}\left(C|s^{t+1}\right) \leq U_{i,t}\left(\tilde{C}|s^{t+1}\right),$$

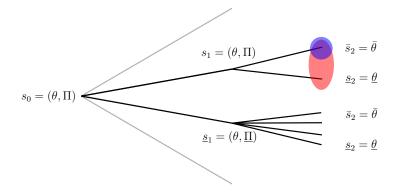
then

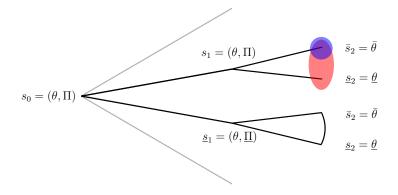
$$U_{i,t}\left(\left.C\right|s^{t}\right) \leq U_{i,t}\left(\left.\tilde{C}\right|s^{t}\right)$$

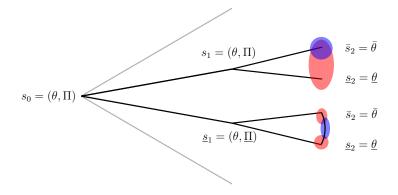
- immediate from recursive rep. of U_{i,t}
- · current beliefs are not allocation dependent
- Same notion as:
 - Epstein-Schneider(2003), Maccheroni, Marinacci, Rustichini(2006), Klibanoff, Marinacci, Mukerji(2005), etc.
- Implies:
 - agents can find ex-ante solution by backward induction (weaker/more policy-relevant, e.g. Hansen-Sargent 2001 multiplier)

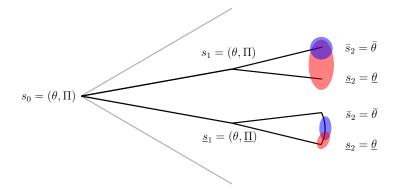
Generalizations

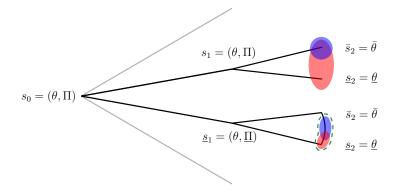












Private skills, beliefs:

- Assumption on beliefs: agree on feasible path (as before)
- Obvious example economy's "worst" path (as before)
- New: well-defined "worst" ← coincidence between:
 - worst in resources
 - worst in subjective-continuation-utility
- · Additional assumption: weak monotonicity of allocations
 - weakly worse off if all others certain to report $\underline{\theta}$ at t, t + 1, ...

Agents with outside options:

- Each agent has outside option $\underline{U}_{i,t}(s_i^t)$
 - · exogenous lack of commitment from agents

- Recall Reform Problem:
 - · promise-keeping is a form of endogenous self-enforcement
 - · then straightforward to handle exogenous self-enforcement:

$$U_{i,t}\left(\left.C^{t}\right|\hat{s}^{t-1},s_{i}^{t}\right)(\sigma^{*})\geq\underline{U}_{i,t}\left(s_{i}^{t}\right)$$

Inefficiency of CE (with private shocks)

Source of inefficiency

- Competitive firms, contract one-to-one with agents:
 - buy k_0 , employ $z_{i,t}$, produce $f(k_{i,t}, z_{i,t})$, return $c_{i,t}$
 - adopt agents' beliefs $\Pi_{i,t+1}$
 - reinterpretation: agents have direct access to *f*, securities markets
- Even if all Arrow-Debreu securities available:
 - · securities contingent on idiosyncratic reports not traded in CE
 - immediate from arbitrage vs. risk-free bonds (e.g. Acemoglu Simsek 2012, Golosov Tsyvinski 2007)
- \Rightarrow CE not efficient in general

Only risk-free bonds in equilibrium

Lemma. Securities contingent on idiosyncratic reports \hat{s}_i^t are not traded in CE.

- Security $a(\hat{s}_i^t)$ pays if agent *i* reports \hat{s}_i^t
- Suppose $a(\hat{s}_i^t)$ costs strictly less than risk-free bond:
 - *i* buys $\infty a(\hat{s}_i^t)$ and sells ∞ risk-free bonds, reports \hat{s}_i^t at *t*
 - *i* nets ∞ profit, sellers of $a(\hat{s}_i^t)$ guaranteed to lose $\rightarrow \leftarrow$

 \Rightarrow only risk-free bonds traded in CE

CE inefficiency: simple example

$$\Pi_{A,1} = \left\{ \underline{\pi}_{A,1}, \overline{\pi}_{A,1} \right\} :$$

- $\underline{\pi}_{A, 1}$: both certain to draw $\underline{\theta}$ at $t \ge 1$
- $\bar{\pi}_{A,1}$: both certain to draw $\bar{\theta}$ at $t \ge 1$

• believes
$$\Pi_{B,1} = \left\{ \underline{\pi}_{B,1}, \overline{\pi}_{B,1} \right\}$$

 $\Pi_{B,1} = \{\bar{\pi}_{B,1}\}:$

- $\bar{\pi}_{B,1}$: both certain to draw $\bar{\theta}$ at $t \ge 1$
- believes $\Pi_{A,1} = {\bar{\pi}_{A,1}}$

CE inefficiency: simple example

Planner:

- transfer consumption to A if both draw $\underline{\theta}$ at t = 1
- IC satisfied: *B* does not believe *A* will draw $\theta_{A,1} = \underline{\theta}$

CE:

- A would have to insure by purchasing risk-free bond
- \Rightarrow $U_{A,0}$ below efficient

Planner insures risk and ambiguity

But notice: in CE, nothing prevents decentralized periodic reforms, history independence, incompleteness

Takeaways

Takeaways

Optimal fiscal policies, without certainty about DGP:

- Simplified, more realistic optimal policies
 - · reformed periodically, incomplete, not fully history dependent

- Simplified algorithm to compute optima
 - computes policy period-at-a-time
 - no full-backward-induction for promises

- Normative approach with meaningful role for social insurance
 - beyond crowding out private insurance

Thank you

Ancillary slides

Risk and heterogeneity

Source: stochastic output f_t : $(k_t, z_t) \rightsquigarrow y_t$

- Examples (depending on application):
 - random variable $f_t(\cdot, \cdot)$
 - deterministic $f(\cdot, \cdot)$, $z_t = \theta_t l_t$ with stochastic θ_t
 - deterministic $f = R_t k_t + \theta_t l_t$, stochastic θ_t , R_t
- Second or third options: idiosyncratic $s_t = (\theta_t, \Pi_{t+1})$

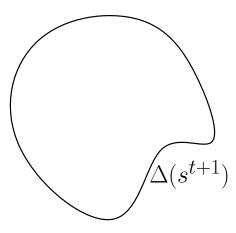
• skill
$$\theta_t \in \Theta \equiv \left\{ \underline{\theta} < \ldots < \overline{\theta} \right\}$$

• beliefs Π_{t+1} about s^{t+1}

(agnostic updating/learning: for convenience Π in *s*)

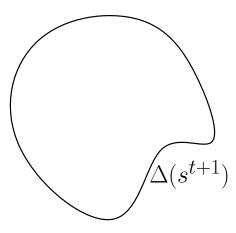
- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



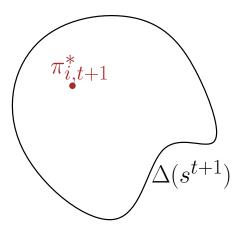
- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



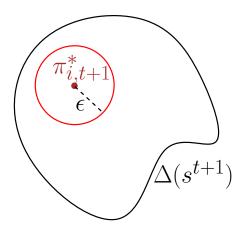
- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



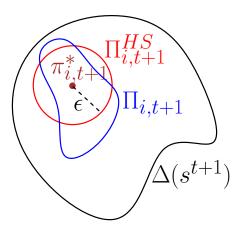
- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



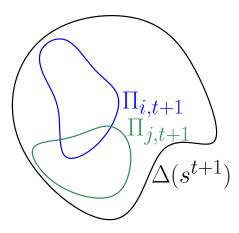
- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



- agent *i* at *t* has statistical model π^{*}_{i,t+1} of θ_{t+1} (focus on θ_{t+1}, "too difficult" to eliminate any π_{t+2})
- distrusts it, considers "nearby" models π_{t+1} :

$$\Pi_{i,t+1}^{HS} \equiv \left\{ \pi_{t+1} \mid d\left(\pi_{i,t+1}^*, \pi_{t+1}\right) \le \epsilon \right\}$$



Periodic reforms in equilibrium

• At t = 0, agent *i* solves for fully continent allocation

$$C_{i} = \left\{ c_{i,t}\left(s^{t}\right), z_{i,t}\left(s^{t}\right), k_{i,t+1}\left(s^{t}\right), b_{i,t+1}\left(s^{t-1}\right) \right\}_{t=0}^{T}$$

• given risk-free bond prices $\{Q(s^t)\}_{t=0}^{T-1}$

Proposition: For any $C = \{C_i\}_{i=1}^N$, there exist incomplete allocations $\{C^t\}_{t=0}^T$ such that

$$U_{i,0}(C|s_0) = U_{i,0}(C^0|s_0) \quad \forall i, s_0$$

 Periodic reforms decentralized: each C^t designed assuming that all agents receive worst beliefs <u>Π</u>_{t+2} and worst shock <u>θ</u> at τ ≥ t + 2