
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 199 (2022) 105206
www.elsevier.com/locate/jet

Implications of uncertainty for optimal policies ✩

Todd Lensman a, Maxim Troshkin b,c,∗

a Department of Economics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
b The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA

c Department of Economics, University of Exeter, Exeter EX4 4PU, UK

Received 6 May 2019; accepted 24 January 2021
Available online 27 January 2021

Abstract

We study the implications of ambiguity for optimal fiscal policy in macro public finance environments 
with heterogeneous agents and private idiosyncratic shocks. We describe conditions under which ambiguity 
implies that it is optimal to periodically reform policies. Periodic reforms lead to simplified optimal policies 
that are not fully contingent on future shocks; at times they also lose dependence on the full history of past 
shocks. These simplified policies can be characterized without complete backward induction when the time 
horizon is finite. However, linear policies can be far from optimal. We also show that equilibria in decen-
tralized versions of these economies are not generally efficient, implying a meaningful role for government 
provision of insurance, unlike in conventional environments with a narrower view of uncertainty.
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“The future ain’t what it used to be.”
[- attributed to Yogi Berra]

1. Introduction

A sizable and growing literature shares the following approach to social insurance, redistri-
bution, and normative questions in dynamic economies more generally:1 Start with a friction, 
typically private information about idiosyncratic shocks, and characterize friction-constrained 
allocations that maximize an ex ante objective, typically social welfare. The optimal policies are 
then the ones that implement constrained-optimal allocations. Crucially, the policy designer and 
the agents in the economy are commonly assumed to know the data-generating process for the 
shocks (“rational expectations”). Three broad outcomes are closely associated with this assump-
tion:

(i) policies are designed once (ex ante) and maintained forever;
(ii) optimal policies are generically complex (contingent on future shocks, history dependent, 

and significantly nonlinear); and
(iii) undistorted competitive equilibria are constrained-efficient, even with private idiosyncratic 

shocks.2

On the other hand, exact knowledge of the data-generating process is widely viewed as a strong 
assumption.3 Moreover, real world policies are often far from (i) and (ii): Government policies, 
especially fiscal policies, are periodically reformed, at least somewhat insensitive to shocks, his-
tory independent, and often affine or piecewise linear. Can any of these real world properties 
be rationalized as optimal? This paper argues that they can, once we move away from the as-
sumption of rational expectations and allow for uncertainty about the data-generating process. In 
addition, as a starting point for a normative approach, (iii) is restrictive because it implies that the 
only insurance role for government policy is to crowd out insurance provided by private markets. 
This paper also shows that (iii) may no longer limit the normative approach when the rational 
expectations assumption is relaxed.

Our goal is to characterize broad properties of optimal policies that are robust with respect to 
incomplete knowledge of the stochastic process for shocks. To do so, we remove the assumption 
of exact knowledge of future distributions of shocks and instead allow a broader view of uncer-
tainty. That is, the agents in the economy face both risk in the conventional sense of stochastic, 
heterogeneous skills, as well as (Knightian or model) uncertainty in the sense that agents enter-
tain multiple possible distributions of future skills, commonly referred to as beliefs, models, or 
priors. The approach we take to modeling risk and uncertainty, with aversion to both, follows 

1 For examples of applications to fiscal policies see, e.g., Kocherlakota (2010). For an example of this approach to 
dynamic social insurance more broadly see, e.g., Williams (2011).

2 See, e.g., Acemoglu and Simsek (2012), or in a classic moral hazard setting see Prescott and Townsend (1984).
3 Growing evidence suggests that idiosyncratic shock distributions change significantly and often. For instance, recent 

administrative data evidence suggests that the distribution of pre-tax earnings in many developed countries has been 
going through dramatic changes that appear irregular, frequent, and apparently unanticipated by the governments (see, 
e.g., Piketty et al., 2018). Related evidence suggests that people tend to hold distribution-incompatible beliefs about their 
future productivities, tax liabilities, etc. (see, e.g., Aghion et al., 2017). In addition, a large empirical literature documents 
substantial uncertainty about both macro and micro variables (see, e.g., Bloom, 2014).
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the approaches in macroeconomics and finance (e.g., Hansen and Sargent, 2001; Epstein and 
Schneider, 2003).4

We consider an otherwise conventional heterogeneous-agents environment with idiosyncratic 
and potentially persistent shocks to skills and beliefs. The data-generating process for shocks 
is arbitrary, and it is not known to anyone in the economy. Each period, every agent draws a 
shock and forms a set of distributions that he believes may represent the data-generating process 
for shocks in the next period. We impose a simple condition on these beliefs, and we keep the 
environment virtually agnostic about any learning that may map histories of observations and 
current distributions into updated beliefs about the future. To aid intuition, we present arguments 
using a recursive maxmin expected utility representation of preferences, with arbitrary belief 
updating rules.5

The economy has a government that seeks to provide social insurance against risk and uncer-
tainty, as well as a degree of redistribution. It is constrained by the same uncertainty about the 
distribution of future shocks, so the government is not an abstract entity with perfect knowledge 
of the data-generating processes. Rather, the government is interpreted concretely as having at 
best the information that all of the agents in the economy have combined.

To make it transparent that the main force behind the results is uncertainty, we first develop 
them in a baseline finite-horizon environment with a finite number of agents, in which agents’ 
idiosyncratic shocks are publicly observable (Section 2). We then extend our results to the set-
ting in which shocks are privately observed by the agents (Section 3). To show that competitive 
equilibria are not generally efficient, we compare outcomes in this private-information economy 
to those in its decentralizations (Section 4). Finally, we further examine the simplicity of optimal 
policies by discussing conditions under which linear policies can be optimal (Section 5).

Briefly, the intuition for the main findings is as follows. First, we show that it is optimal for 
the government to periodically reform, i.e., that the (constrained) efficient level of welfare can be 
delivered with allocations that are redesigned as needed after the economy realizes a new set of 
shocks. Our condition on beliefs is that today each agent allows for the possibility of everyone 
believing tomorrow that some shocks will not be realized in the future. Such shocks can then 
be ignored by a non-paternalistic government when designing a welfare-maximizing policy, as 
long as this does not pose an issue for feasibility. If tomorrow agents’ actual beliefs differ (i.e., 
a situation described by the epigraph takes place), then a Pareto improvement can be found. In 
other words, the government may find it possible in subsequent periods to improve everyone’s 
welfare by redesigning the continuation allocations, i.e., by reforming. Every agent foresees this 
possibility but does not find it necessary to preempt it since their welfare weakly increases as a 
result.

By the same logic, broader uncertainty implies that optimal policies are simplified in the sense 
that they are not fully contingent on future shocks. Optimal allocations may also lose dependence 
on past shocks whenever a reform provides a big enough improvement to the status quo alloca-
tion. In addition, because they are periodically reformed, optimal allocations can be constructed 
by solving what we call a reform problem. The reform problem is recursive in nature, with the 

4 See also Hansen et al. (2006). More recent studies in those literatures have focused on showing that uncertainty can 
help explain the behavior of economic aggregates to a surprising degree, e.g., Bhandari et al. (2017).

5 The results, however, do not hinge on the maxmin representation and are readily generalizable to, e.g., dynamic 
Variational Preferences, and more generally would extend to a dynamic version of the Uncertainty Averse Preferences 
that unify many other specifications, including in particular the Multiplier Preferences of Hansen and Sargent (2001). 
See, e.g., Machina and Siniscalchi (2014) for a review of the links between these representations.
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previously designed policy as a state variable, and provides an algorithm for characterizing the 
optimum period by period, without solving for a complete sequence of fully state-contingent 
policy functions. When the time horizon is finite, the optimality of reforms implies that optimal 
allocations can be characterized without the full backward induction ordinarily required. Despite 
these simplifications, restrictive assumptions are required for linear or even affine policies to 
be optimal, e.g., that agents supply labor inelastically and believe that idiosyncratic shocks are 
independently distributed.

Finally, broader uncertainty creates a potentially meaningful role for government provision 
of insurance. In decentralizations of the private-information economy, agents contract with com-
petitive firms to provide labor and capital in exchange for consumption. We show that whether 
competitive equilibria are efficient depends crucially on the relationship between the firms’ un-
certainty and the government’s uncertainty, as expressed through its feasibility constraint. If firms 
are more uncertain about the data-generating process than the government, they may be unwill-
ing to provide the same degree of insurance as the government. In this sense, uncertainty may 
act as a friction that impedes the efficient operation of competitive markets. Nevertheless, by the 
same intuition as in the government’s problem, any insurance that decentralized economies do 
provide can still be simplified and periodically reformed.

1.1. Related literature

We contribute most directly to a literature that studies the design of social insurance and re-
distribution in dynamic economies (see, e.g., Kocherlakota, 2010). It generally assumes exact 
knowledge of the data-generating process to characterize optimal policies when the government 
has few or no direct constraints on policy tools, but potentially faces informational or commit-
ment frictions. A key lesson without uncertainty is that optimal dynamic policies are generically 
complex. For example, Farhi and Werning (2013) use the first-order approach to characterize 
complex dynamics of optimal income taxes over the life cycle. Recent contributions also intro-
duce additional frictions or permit additional heterogeneity on the part of agents (e.g., Scheuer 
and Werning, 2016; Stantcheva, 2017, and Makris and Pavan, 2019). However, many of these 
contributions also compute the welfare losses from restrictions on policy tools to argue that sim-
pler policies can deliver welfare that closely approaches that of the optimal dynamic policies. 
Our results provide a theoretical foundation for simpler policies by showing that such policies 
can in fact be optimal when there is uncertainty about the data-generating process.

Parts of this broader literature focus on a government that has an inability to commit to its own 
policies and may seek to implement reforms. For example, Farhi et al. (2012) approach this by 
constraining the government ex ante to choosing policies that it will not seek to reform later. We 
instead study conditions under which periodic reforms are optimal even when the government 
has the ability to commit to a policy.

Closely related to the implementation of optimal policies, an important observation is that de-
centralized competitive equilibria result in (constrained) efficient allocations in many cases, even 
when agents have private information (e.g., Acemoglu and Simsek, 2012). A common interpre-
tation is that the only result of a government’s social insurance policy is to crowd out insurance 
provided by private markets. Our results show that removing the assumption of exact knowledge 
of the data-generating process and permitting firms and the government to react heterogeneously 
to this uncertainty can overturn this conclusion, creating a potentially meaningful role for the 
government provision of insurance.
4
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More broadly, a growing literature in macroeconomics has started to consider optimal fiscal 
and monetary policies when either the government or the agents are uncertain about the data-
generating process (e.g., Hansen and Sargent, 2012; Karantounias, 2013; Benigno and Paciello, 
2014; see Barlevy, 2011 for a review). Most related to this paper, Kocherlakota and Phelan (2009)
consider an endowment shock economy in which the government, but not the agents, is uncertain 
about the data-generating process. They derive conditions under which the government cannot 
improve on the competitive equilibrium allocation. We consider optimal policies in a dynamic 
production economy in which no one is certain, with a potentially beneficial role for government 
intervention. Bhandari (2015) studies properties of optimal risk-sharing arrangements between 
uncertain agents, using the multiplier preferences of Hansen and Sargent (2001) to characterize 
the optimal consumption path and long-run inequality. Kocherlakota and Song (2018) reexamine 
mechanisms for the provision of a public good in economies where agents are uncertain about 
the distribution of private valuations. Similar to our results, they find that uncertainty can lead to 
simple implementations of efficient policies.

A recent theoretical literature has also studied Pareto optimal allocations and optimal mecha-
nisms in economies where the agents or the mechanism designer are uncertain about primitives 
of the environment (see Carroll, 2019 for a review). A subset of this literature attempts to ra-
tionalize simple mechanisms observed in reality using uncertainty (e.g., Carroll, 2015), and we 
similarly attempt to justify simple properties of real-world fiscal policies. Rigotti et al. (2008) and 
Strzalecki and Werner (2011) characterize conditions under which Pareto optimal allocations in 
static endowment economies feature full insurance against idiosyncratic risk. They show that full 
insurance obtains precisely when agents have at least one appropriately-defined subjective belief 
in common. We make a qualitatively different assumption on agents’ beliefs to show that Pareto 
optimal allocations in a dynamic economy are insensitive to future shock realizations.

Methodologically, our formulation of the agents’ preferences closely follows the recursive 
multiple-priors utility axiomatized by Epstein and Schneider (2003), and it includes a varia-
tion of Hansen and Sargent’s (2001) constraint preferences as a special case. Our approach to 
characterizing optimal allocations for uncertainty averse agents follows Zhu (2016), who studies 
incomplete and affine contracts in the context of financial contracting. The formalism we use is 
distinct from but in the spirit of robust mechanism design (see, e.g., Bergemann et al., 2013), 
in the sense that we seek to characterize policies that are robust with respect to misspecification 
of the environment and to determine if such policies display any inherent simplicity. In particu-
lar, we remove the assumption that the data-generating process is known to the government and 
the agents. However, the social choice functions we focus on depend on agents’ beliefs so that 
the government is not paternalistic, evaluating the policies in line with how the agents do. The 
economies we study are also dynamic and allow for private information.

2. Uncertainty with public information

To make it clear that the main force behind the results is uncertainty, we first consider a 
conventional dynamic heterogeneous-agents economy with public information. The only uncon-
ventional element - in a sense the only friction in this baseline setup - is the assumption that no 
one in the economy knows with certainty the future distributions of idiosyncratic shocks. We 
define an efficient allocation as a solution to the problem of a government seeking to provide 
social insurance and a degree of redistribution. We then show that the government can achieve 
efficiency with policies that are both simplified and that can be constructed in a simplified way. 
5



T. Lensman and M. Troshkin Journal of Economic Theory 199 (2022) 105206
Such policies are not fully contingent on future shocks, are periodically reformed, and lose de-
pendence on the full history of past shocks.6

2.1. Baseline setup

The economy exists in discrete time t ∈ {0, . . . , T } and is populated by a finite number of 
agents i ∈ {1, . . . ,N}.7 At the beginning of t = 0, nature draws a sequence of idiosyncratic 
shocks sT

i ≡ (
si,0, .., si,T

)
for each agent and reveals si,t to agent i at the beginning of t . Each 

shock si,t is drawn from a finite set S, and we let st ≡ (
s1,t , . . . , sN,t

)
denote the shock vector in 

period t . The data-generating process for the shocks is arbitrary and is not known with certainty to 
anyone in the economy. In the baseline economy of this section, this lack of certainty is the only 
friction, so a shock becomes public information once it is revealed to an agent. Consequently, the 
vector of all agents’ shock histories up to period t , st ≡ (

st
1, . . . , s

t
N

)
, is public information at the 

beginning of t . We call st the state of the economy at t .
The state st determines each agent’s skill and beliefs. θi,t

(
si,t

)
denotes agent i’s idiosyncratic 

skill, so that if the amount of labor the agent exerts is li,t ∈ [0,1], then the effective labor supplied 
is zi,t ≡ θi,t li,t . Let � ⊂ R++ denote the finite set of values that each skill θi,t can take, and let 
θ and θ̄ denote the minimum and maximum elements of � respectively. Let θ t

i ≡ (
θi,0, . . . , θi,t

)
denote a period-t history of skills.

�i,t+1
(
st

)
denotes agent i’s set of subjective beliefs π ∈ � 

(
SN

)
over the next period’s shock 

vector st+1. The set �i,t+1
(
st

)
is a function of the state st , not just the shock si,t , because agent 

i observes st at the beginning of period t . As we describe below, this belief set represents agent 
i’s uncertainty in state st about the data-generating process for shocks.

To examine properties common to social insurance and redistribution in general, without re-
stricting attention to specific collections of policy tools, we focus on the allocations that a policy 
would deliver to agents: An allocation

C ≡ {
ct

(
st

)
, zt

(
st

)
, kt+1

(
st

)}T

t=0

is a sequence of N -vector valued consumption, effective labor, and capital functions that depend 
on the state st . For example, in period t with state st , agent i consumes ci,t

(
st

)
, supplies effective 

labor zi,t

(
st

)
, and saves capital ki,t+1

(
st

)
.8

Each agent’s preferences over allocations are assumed to have a recursive representation with 
continuation utility

Ui,t

(
C

∣∣st
) ≡ u

(
ci,t

(
st

)
,

zi,t

(
st

)
θi,t

(
si,t

)
)

+ β inf
π∈�i,t+1

(
st

)Eπ

[
Ui,t+1

(
C

∣∣∣st+1
)]

. (1)

6 Without uncertainty about the data-generating process, the efficient allocation with public information does not dis-
play history dependence when the data-generating process is Markov. However, even then efficient capital investment 
can depend on the data-generating process in complex ways that preclude periodic reforms, especially when the process 
is persistent.

7 In the main text, we assume that the time horizon T , the number of agents N , and the set of possible shocks are finite. 
Our results readily extend to infinite cases, as we discuss in Appendix B.

8 We could also consider belief-free allocations in which the consumption, effective labor, and capital functions depend 
on the state st only through the history of skills θt . Our results continue to apply when restricting to belief-free allo-
cations. The same proofs apply with minor modifications, and in fact our key results (Propositions 1 and 3) hold under 
weaker conditions on beliefs than required below.
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Here β ∈ (0,1) is the subjective discount factor, the Bernoulli utility function u is concave and 
satisfies uc, −ul > 0, and Eπ denotes an expectation with respect to the belief π . With this 
specification of preferences, agents are potentially averse to both risk originating from stochastic 
skills and uncertainty captured by multiple beliefs. The latter is usually interpreted as seeking 
to make choices that are robust with respect to the shock distribution: Instead of choosing what 
works best in a particular future scenario, agents choose what works decently in any scenario, 
which entails choosing what works best in the worst scenario.

Each agent is initially endowed with capital k0 > 0. Output is produced using a constant 
returns to scale production function f :R2+ → R+ increasing in capital and effective labor. Given 
an initial state s0, an allocation C is feasible if9∑

i

[
ci,t

(
st

) + ki,t+1
(
st

)] ≤
∑

i

f
(
ki,t

(
st−1

)
, zi,t

(
st

)) ∀t ≥ 0, st ≥ s0. (2)

This aggregate ex post feasibility constraint must hold for any state st that could follow s0, 
because the agents may have different beliefs about the distribution (or even the support) of the 
state in each period.

The economy also has a government that seeks a degree of redistribution while providing 
social insurance. The government’s problem is to maximize a weighted average of the agents’ 
utilities, subject to feasibility and non-negativity of policy functions, where the weighting cap-
tures the redistribution motive and is given by a non-negative vector η ∈ RN+ . To focus on social 
insurance and redistribution, the agents are not allowed to leave the social contract designed 
by the government, i.e., they do not have access to an exogenous outside option. Given social 
welfare weights η and an initial state s0, an allocation C∗ (s0) is efficient if

C∗ (s0) ∈ arg max
C

∑
i

ηiUi,0 (C |s0 ) , (3)

subject to feasibility and non-negativity. Note that instead of an abstract entity with perfect 
knowledge of the data-generating process, the government concretely possesses the same infor-
mation about realized shocks and the future state distribution as do all of the agents combined. 
Note also that C∗ could depend in a complex way on the state in each period, and it is typically 
designed once and maintained forever. We assume that the government has full commitment 
power in the sense that if it designs an allocation at t ≥ 0 and wishes to reform it at τ > t , it must 
deliver the period-t continuation utility promised to agents at t .

2.2. Optimality of periodic reforms

We first show that under a suitable condition on agents’ beliefs, the government can achieve 
efficiency with simplified policies that are not fully contingent on future shock realizations and 
are periodically reformed. Loosely speaking, the condition on beliefs is that today everyone 
allows for the possibility of everyone believing tomorrow that some of the states will not be 
realized the day after tomorrow. Such states then can be ignored to design a simplified policy 
without sacrificing efficiency, as long as this does not pose an issue for feasibility. If tomorrow 
the actual beliefs differ, then a Pareto improvement can be found.

9 For any two states st and sτ with t ≥ τ , we say that st follows sτ , written st ≥ sτ , if the first τ + 1 components of st

are sτ . We use this ex post notion of feasibility for simplicity, but the results below readily generalize under less stringent 
feasibility constraints.
7
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For ease of exposition, we first illustrate the results in the case where everyone allows for the 
possibility of everyone believing tomorrow that the economy will follow its worst path; we then 
discuss how the results generalize in Section 2.4. To be more precise, assume there is a shock s
such that θi,t

(
s
) = θ for any agent i and in any period t , and such that the agent believes everyone 

will realize s in t + 1. When the distinction is clear from the context, we will let s denote the 
shock and the shock vector 

(
s, . . . , s

)
.

To describe the condition on beliefs, assume that the set of shocks S is rich enough so 
that for any shock s, there is a shock s′ (s) that gives the same skill to the agent, but with 
a belief that everyone will receive s next period. That is, for any t ≤ T − 2, any state st , 
and any vector of shocks of the other agents s−i,t+1, we have θi,t+1

(
s′ (s)

) = θi,t+1 (s) but 
�i,t+2

(
st ,

(
s′ (s) , s−i,t+1

)) = {
π

}
for all i, where π

(
s
) = 1. Notice that since an agent realizing 

the shock s believes that the shock will persist, we also have �i,t+3
(
st+1,

(
s, s−i,t+2

)) = {
π

}
. 

We assume that s′ is idempotent without loss of generality.
It will be convenient to let S′ ≡ s′ (S) ⊆ S denote the subset of shocks of the form s′ (s), 

and let S′N ≡ s′ (S)N ⊆ SN denote the subset of shock vectors found by applying s′ to each 
element. Let π ′ ≡ π ◦ (

s′)−1 denote the pushforward measure obtained from a measure π under 
the mapping s′, i.e., π ′ is the belief π “shifted” to place weight only on the subset of shock 
vectors S′N . The condition on beliefs then can be stated as:

Assumption 1. For any t ≤ T − 2, st , i, and π ∈ �i,t+1
(
st

)
, we also have π ′ ∈ �i,t+1

(
st

)
, 

where π ′ = π ◦ (
s′)−1.

The requirement here is that, regardless of the beliefs at any t about t + 1 skills, each agent 
considers the possibility of everyone believing at t + 1 that some states cannot be realized in 
subsequent periods. Given the definition of s′ in this case, these are the states in which some 
agent i realizes a skill θ > θ .

We call an allocation Ct simplified at t if its policy functions depend on st+1 only through 
s′ (st+1) and if they do not depend on st+2, . . . , sT .10

Proposition 1. In any period t , any feasible allocation C is weakly Pareto dominated by a feasi-
ble simplified allocation Ct , i.e.,

Ui,t

(
Ct

∣∣st
) ≥ Ui,t

(
C

∣∣st
) ∀i.

We describe the intuition here with t = 0 and provide a detailed proof in Appendix A.1. By 
Assumption 1, at t = 0 each agent believes that at t = 1, regardless of the distribution of skills, it 
is possible to realize a state in which everyone is certain that the shock vector s will be realized 
at t ≥ 2. Given an initial allocation C, the simplified allocation C0 is defined by presuming 
that such a pessimistic t = 1 state will obtain and that the shock vector s will be realized at 
t ≥ 2. In particular, for any period-t state st , the C0 allocation functions c0

t

(
st

)
, z0

t

(
st

)
, and 

k0
t+1

(
st

)
are set equal to the corresponding C allocation functions, but evaluated at the state (

s0, s
′
1 (s1) , s, . . . , s

)
instead of st . C0 is then feasible regardless of the realization of the state 

in each period. Moreover, since C0 depends only on the (fixed) t = 0 state and the vector of 
skills at t = 1, for any state st 
= (

s0, s
′
1 (s1) , s, . . . , s

)
in which agent i receives lower flow utility 

10 This definition also generalizes naturally to more general belief conditions, as we discuss in Section 2.4.
8



T. Lensman and M. Troshkin Journal of Economic Theory 199 (2022) 105206
from C0 than from C, Assumption 1 implies that agent i ignores st when comparing the two 
allocations. As a result, each agent weakly prefers C0 to C.

To see why this argument generally fails when agents know the distribution of the states st

(or more generally when agents’ belief sets are singletons), note that Assumption 1 implies that 
each agent’s t = 0 continuation utility Ui,0 is not strictly increasing in his flow utility in each 
state st . Rather, because he is uncertain and is averse to this uncertainty, the agent ignores any 
state st 
= (

s0, s
′
1 (s1) , s, . . . , s

)
in which his flow utility is higher than his flow utility in the 

corresponding state 
(
s0, s

′
1 (s1) , s, . . . , s

)
. By contrast, a Bayesian agent’s t = 0 continuation 

utility is strictly increasing in his flow utility in every state in the support of his prior distribution, 
so lowering his flow utility in state st 
= (

s0, s
′
1 (s1) , s, . . . , s

)
to that in state 

(
s0, s

′
1 (s1) , s, . . . , s

)
will generally strictly lower his t = 0 continuation utility. Assumption 1 ensures that our agents 
are sufficiently uncertain so that this is not the case.

The relevance of Proposition 1 for optimal policy becomes apparent when applied to an ef-
ficient allocation C∗: An efficient allocation C∗ can be implemented by a simplified allocation 
C0, in the sense that C0 delivers the same t = 0 continuation utility to each agent. However, if 
at t = 1 a shock vector outside of S′N is realized, then the continuation allocation prescribed 
by C0 may no longer be optimal. In that case, the government will seek to reform C0 to a new 
allocation C1 in order to raise t = 1 social welfare while continuing to deliver at least the t = 0
continuation utility promised to each agent under C0. The same arguments as above imply that 
the reform allocation C1 can be simplified at t = 1. In particular, Assumption 1 applies at t = 1, 
so the government can construct an optimal reform allocation C1 by assuming that states of the 
form st = (

s1, s′ (s2) , s, . . . , s
)

will be realized at t ≥ 2. By solving for such optimal reform 
allocations in each period, the government can construct a sequence of simplified allocations {
Ct

}T

t=0 that implements C∗.

2.2.1. Constructing optimal reforms
Proposition 1 guarantees the existence of simplified, periodically-reformed allocations that 

implement the efficient allocation. More significantly, it also provides an algorithm that can be 
used to compute the simplified allocations 

{
Ct

}T

t=0, without first solving for the efficient alloca-
tion C∗.

Corollary 1. Optimal simplified allocations 
{
Ct

}T

t=0 can be constructed period by period, with-
out computing the fully state-contingent allocation C∗.

In general, a simplified allocation Ct−1 that is not fully state-contingent can be reformed to 
an optimal continuation allocation C∗ (

st ,Ct−1
)
, given by a solution to the reform problem

max
C

∑
i

ηiUi,t

(
C

∣∣st
)

(4)

subject to non-negativity and∑
i

[
ci,τ

(
sτ

) + ki,τ+1
(
sτ

)] ≤
∑

i

f
(
ki,τ

(
sτ−1

)
, zi,τ

(
sτ

)) ∀τ ≥ t, sτ ≥ st ,

Ui,t−1

(
Ct−1

t−1 , (Cτ )
T
τ=t

∣∣∣st−1
)

≥ Ui,t−1

(
Ct−1

∣∣∣st−1
)

∀i.

The second constraint is a form of promise-keeping (with no such constraint at t = 0). Here (
Ct−1, (Cτ )

T
τ=t

)
denotes the allocation that uses the Ct−1 policy functions ct−1, zt−1, and kt−1

t
t−1 t−1 t−1

9
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in period t − 1 and the C policy functions in periods τ ≥ t . The promise-keeping constraint 
appears because when the government chooses a policy at t − 1, it commits to delivering at least 
the t −1 continuation utility promised to each agent, even after subsequent reforms. Proposition 1
implies that the government can choose a simplified allocation Ct to solve this reform problem, 
so this reform process constructs a sequence of optimal simplified allocations that implement the 
efficient allocation C∗. Note that the components of the Ct−1 allocation from t onward serve 
as a fallback option in the case that the government cannot construct a better reform allocation 
at t . Even though the government has the ability to fully commit to maintaining an allocation 
forever, it may choose not to and instead design optimal simplified policies period by period, 
subsequently reforming them as necessary.

This algorithm for computing optimal simplified allocations period by period may entail sub-
stantial computational benefits relative to the case without uncertainty. When the data-generating 
process is known to the government and the agents, characterizing the efficient allocation for a 
given period requires full backward induction from the last period, considering all possible paths 
that the economy may follow. By contrast, with uncertainty it is not necessary to compute the 
fully-contingent efficient allocation C∗. Rather, the government must only compute simplified 
allocations in each period.

2.3. History independence

The simplified allocations Ct that solve the reform problem above are simplified because they 
are not fully contingent on future shocks. In particular, the construction in the proof of Proposi-
tion 1 shows that they only depend on the period-t state st and the period-t + 1 skills θi,t+1. We 
next show that they are also history independent in the sense that they lose full dependence on 
previous shocks whenever reforms provide an improvement to previously designed government 
policies. Specifically, whenever agents’ belief sets �i,t+1

(
st

)
do not depend on st−1 and the 

government’s promise-keeping constraints are slack at t , the optimal reform Ct is independent 
of the t − 1 state st−1.

Proposition 2. For any t at which �i,t+1
(
st

)
does not depend on st−1 for all i and the promise-

keeping constraints in the reform problem (4) are slack, the optimal Ct is independent of st−1

conditional on the distribution of capital kt−1
t

(
st−1

)
.

Proof. When the promise-keeping constraints in problem (4) do not bind at t , the government 
must maximize an η-weighted average of agents’ t continuation utilities, subject to feasibility 
at τ ≥ t . If all agents’ belief sets �i,t+1

(
st

)
do not depend on st−1, the continuation utility 

Ui,t

(
C

∣∣st
)

does not depend on st−1 other than through C, and similarly st−1 is only relevant 
to the feasibility constraint through the period-t capital distribution kt−1

t

(
st−1

)
, which is fixed 

at the beginning of t . Thus to maximize its objective, the government will choose the optimal 
reformed Ct so that it does not depend on st−1, given fixed kt−1

t

(
st−1

)
. �

Agents’ belief sets �i,t+1
(
st

)
do not depend on st−1 when, for example, they are derived by 

using Bayes’ rule to update a fixed set of priors under which the shock vector follows a Markov 
process. The result also generalizes naturally to the case in which agents’ belief sets �i,t+1

(
st

)
depend only on shocks from period τ ≤ t to period t , (sτ , . . . , st ). In this case, the optimal Ct

is independent of the τ − 1 state sτ−1 whenever a reform leads to the government’s promise-
keeping constraints being slack at t .
10
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A benchmark case in which the allocation Ct will never depend on the t −1 state st−1 for t ≥ 1
arises when (i) agents’ belief sets �i,t+1

(
st

)
do not depend on st−1 and (ii) Ct can be computed 

by backward induction for all t .11 To see this, fix t = 0, and start by solving for the optimal 
t = 1 continuation allocation C0

1 ≡ {
c0
t , z

0
t , k

0
t+1

}T

t=1
. Given a t = 1 shock vector s′

1 ∈ S′N and a 
distribution of capital k0

1, the continuation allocation C0
1

(
s′

1, k
0
1

)
solves

max
C0

1

∑
i

ηiUi,1

(
C0

1

∣∣s′
1

)

subject to non-negativity and∑
i

[
c0
i,t

(
s′

1, s, . . . , s
) + k0

i,t+1

(
s′

1, s, . . . , s
)]

≤
∑

i

f
(
k0
i,t

(
s′

1, s, . . . , s
)
, z0

i,t

(
s′

1, s, . . . , s
)) ∀t ≥ 1.

Note that Ui,1 does not directly depend on s0 because we assume that �i,2
(
s1

)
does not de-

pend on s0. The government solves this problem for each shock vector s′
1 ≥ s0 and each capital 

distribution k0
1 , and the remaining policy functions c0

0, z0
0, and k0

1 are then found by a similar 
optimization problem at t = 0, taking C0

1 as given.
At t = 1, if a shock vector s′

1 ∈ S′N is realized, then by construction the continuation alloca-
tion C0

1

(
s′

1, k
0
1

)
is optimal. The government then chooses not to reform and sets C1 = C0

1

(
s′

1, k
0
1

)
. 

If a shock vector s1 /∈ S′N is realized, then there exists an agent i who believes it possible that an 
agent j will realize a skill θj,t > θ in some period t ≥ 2. In such a period-t state, the government 
can produce strictly greater output than if all agents realized skill θ while delivering the same 
continuation utilities. The government would not reduce agents’ t = 1 continuation utilities in 
response to one agent i receiving more optimistic beliefs than anticipated in period 1. As a re-
sult, C1 must deliver weakly greater t = 1 continuation utility than C0

1 to every agent regardless 
of the realized shock vector s1, so any re-optimized C1 must trivially satisfy the promise-keeping 
constraint. In particular, if the optimal simplified allocation Ct can be constructed by backward 
induction for all t , then promise-keeping constraints will never bind. The resulting Ct will then 
be independent of st−1 for t ≥ 1.

2.4. Discussion

Three points about our setting and results warrant further discussion. First, we briefly relate 
our economy’s information structure and preferences to similar models of uncertainty aversion 
in decision theory and macroeconomics. Second, the optimality of periodic reforms may suggest 
that our results can be attributed to dynamic inconsistency of the agents’ preferences.12 We ex-
plain that this is not the case, and indeed the agents’ preferences satisfy the standard notion of 

11 It may not always be possible to construct optimal allocations using backward induction. For example, if beliefs are 
heterogeneous, it may be optimal in period t to promise an agent a larger share of consumption in some t + 1 states than 
would be optimal when designing continuation allocations starting in period t + 1. This complication arises because the 
government’s preferences over allocations may not be dynamically consistent, even though the agents’ preferences are.
12 It is well-known that uncertainty (relaxing Savage’s Sure-Thing Principle) creates the potential for dynamic incon-
sistency (see, e.g., Machina and Siniscalchi, 2014).
11
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dynamic consistency used in the literature. Third, we discuss how the condition on beliefs can be 
weakened.

2.4.1. Information structure and preferences
The information structure and preferences described in Section 2.1 include many of those 

found in the literature as special cases. For example, the canonical setting of Epstein and Schnei-
der (2003) is obtained by letting SN(T +1) denote the underlying state space and letting (Ft )

T
t=0

denote the filtration generated by the stochastic process 
(
st

)T

t=0. The recursive representation 
(1) is then precisely the one axiomatized by Epstein and Schneider (2003) when allocations are 
permitted to be random, while the same representation was axiomatized with deterministic allo-
cations by Kochov (2015).

In addition, while we remain agnostic about the belief sets �i,t+1
(
st

)
, one possibility is to 

generate these sets using the procedure described by Hansen and Sargent (2001): In each state 
st , each agent i constructs a statistical model π∗ ∈ � 

(
SN

)
that describes what he thinks may 

be the true distribution of the next period’s shock vector st+1. The agent distrusts this model 
and considers other models π that are “close to” π∗ in the sense of a distance d on � 

(
SN

)
, 

commonly taken to be relative entropy. Given a parameter ε ≥ 0 that governs how uncertain 
the agent is, his set of beliefs is �i,t+1

(
st

) ≡ {π |d (π,π∗) ≤ ε}. If the distance d takes into 
account only the distributions of skills θt+1 ≡ (

θ1,t+1, . . . , θN,t+1
)

implied by π and π∗, then 
Assumption 1 is easily satisfied. However, note that this construction of the agent’s beliefs is 
generally not equivalent to selecting a prior P ∗ ∈ � 

(
SN(T +1)

)
over the state space ex ante, using 

a distance d on � 
(
SN(T +1)

)
to construct a family of multiple priors, and then allowing each 

agent to update the priors using Bayes’ rule in each period. Unless the set of priors happens 
to satisfy the rectangularity property of Epstein and Schneider (2003), the resulting family of 
preferences will fail to be dynamically consistent and so will not have a recursive representation 
of the form (1).

2.4.2. Dynamic consistency
The agents’ preferences are defined recursively so that they satisfy the following notion of 

dynamic consistency: For any t < T and any st , consider two allocations C and C̃ that coincide 
at t . Suppose that agent i weakly prefers C̃ to C at t + 1 for any state st+1 ≥ st :

Ui,t+1

(
C

∣∣∣st+1
)

≤ Ui,t+1

(
C̃

∣∣∣st+1
)

∀st+1 ≥ st .

Then the agent’s preferences are dynamically consistent in the sense that he will also weakly 
prefer C̃ to C at t :

Ui,t

(
C

∣∣st
) ≤ Ui,t

(
C̃

∣∣st
)

.

This notion of dynamic consistency features prominently in the literature on dynamic prefer-
ences with uncertainty. For example, the axiomatizations of recursive Variational Preferences, 
recursive Maxmin Preferences, and recursive Smooth Ambiguity Preferences all require this 
property. Epstein and Schneider (2003) additionally show that dynamic consistency with recur-
sive Maxmin Preferences is equivalent to a “rectangularity” condition on agents’ prior distribu-
tions (see their Theorem 3.2), and it is immediate that the sets of priors induced by our belief sets 
�i,t+1

(
st

)
satisfy that condition as well.

Our agents’ preferences also satisfy a slightly weaker property, but one that is arguably more 
relevant in macroeconomics and public finance (Hansen and Sargent, 2006): Dynamic prefer-
ences are sufficiently consistent over time if a solution to a dynamic choice problem computed 
12
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by backward induction is also optimal ex ante. This condition is strictly weaker than the notion of 
dynamic consistency above because it only implies consistency in preference orderings involv-
ing the ex ante optimal solution. For example, the constraint preferences of Hansen and Sargent 
(2001) do not satisfy the definition of dynamic consistency above, but they do satisfy the weaker 
property (see, e.g., Epstein and Schneider, 2003, Section 5).

2.4.3. More general belief conditions
The condition on beliefs imposed by Assumption 1 essentially requires that, at t = 0, each 

agent believes that regardless of the skills realized at t = 1, everyone may be certain that all skills 
will equal θ in subsequent periods. This “possibility of certainty” that the economy’s worst-case 
scenario will obtain at t ≥ 2 is likely a strong assumption. Moreover, it may (falsely) suggest that 
our results require the existence of states s1 in which our uncertainty-averse agents entertain no 
uncertainty at all!

In Appendix A.2, we provide an example showing that this is not the case, and in fact periodic 
reforms can remain optimal under more realistic belief conditions. It is also simple to see how 
Proposition 1 generalizes when Assumption 1 is relaxed: Consider a relaxation requiring that 
at t = 0, each agent believes that regardless of the skills realized at t = 1, everyone may be 
certain that skills will remain below some value θ̌ ∈ � in subsequent periods. If θ̌ > θ , agents 
can remain uncertain at t = 1 about the distribution of future skills, though they are certain that 
all skills will satisfy θi,t ≤ θ̌ . Our arguments above then extend naturally to this case. As to be 
expected, the price paid for this relaxation is a greater degree of state dependence (equivalently, 
a smaller degree of simplification) in the simplified allocation C0. Finally, we note that this 
relaxation and the example in the Appendix are meant to be suggestive rather than exhaustive; 
other assumptions on beliefs can lead to a lack of state dependence (e.g., only in a particular 
period) in Pareto optimal allocations.

3. Uncertainty with private information

For some applications, it is clearly too demanding to presume that uncertainty about the data-
generating process is the only friction in the design of optimal policies. This section is devoted 
to relaxing the assumption of publicly observable skills and beliefs. We consider private shocks 
and show that the main results of Section 2 persist in economies constrained by uncertainty as 
well as private information.

3.1. Private information setup

Consider the following modification to the baseline setup in Section 2.1: Agents are privately 
informed about their shocks si,t , and after receiving them at the beginning of the period, they 
can make reports. Let ŝi,t denote a reported shock, and let ŝt

i ≡ (
ŝi,0, . . . , ŝi,t

)
denote a history of 

reported shocks up to period t , called agent i’s reported type; st
i ≡ (

si,0, . . . , si,t
)

denotes agent 
i’s type in period t . Let ŝt ≡ (

ŝt
1, . . . , ŝ

t
N

)
denote the reported state of the economy.

A reporting strategy is σi ≡ {
σi,t

}T

t=0, where σi,t maps a reported state ŝt−1 and an actual type 
st
i to a reported shock ŝi,t . Let � be the set of possible reporting strategies, and let σ ≡ {σi}Ni=1 ∈

�N be a strategy profile. The truth-telling strategy is denoted σ ∗
i , and similarly σ ∗ ≡ {

σ ∗
i

}N

i=1
denotes the strategy profile in which all agents use the truth-telling strategy.

Each agent i’s period-t skill θi,t

(
si,t

)
continues to be a function of his current shock si,t , but 

we must adjust the definition of a belief π as well as the domain of the belief set mappings 
13
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�i,t+1 to account for the incomplete information about other agents’ shocks. A period-t belief 
π ∈ � 

(
S(N−1)(t+1)+1

)
for agent i is now a distribution over the other agents’ current types st

−i

and his own next period shock si,t+1. To allow for learning about the distribution of other agents’ 
shocks over time, agent i’s belief set �i,t+1

(
ŝt−1, st

i , σ
)

is now a function of the reported state 
ŝt−1, his current type st

i , and the strategy profile σ . When there is no risk of confusion, we will 
suppress the dependence on σ for notational simplicity.

Given an allocation C = {
ct

(
ŝt

)
, zt

(
ŝt

)
, kt+1

(
ŝt

)}T

t=0, a reported state ŝt−1, a type st
i , and a 

strategy profile σ , agent i’s period-t continuation utility is

Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ
) ≡ inf

�i,t+1
(
ŝt−1,st

i

)Eπ

[
Wi,t

(
C

∣∣∣ŝt−1, st , si,t+1

)(
σ
)]

, (5)

where

Wi,t

(
C

∣∣∣ŝt−1, st , si,t+1

)(
σ
) ≡ u

(
ci,t

(
ŝt−1, σt

(
ŝt−1, st

))
,
zi,t

(
ŝt−1, σt

(
ŝt−1, st

))
θi,t

(
si,t

)
)

(6)

+ βUi,t+1

(
C

∣∣∣(ŝt−1, σt

(
ŝt−1, st

))
, st+1

i

)(
σ
)
.

In (6) we slightly abuse notation letting σt

(
ŝt−1, st

) ≡ (
σ1,t

(
ŝt−1, st

1

)
, . . . , σN,t

(
ŝt−1, st

N

))
de-

note the vector of all agents’ period-t reports. Thus 
(
ŝt−1, σt

(
ŝt−1, st

))
denotes the reported state 

ŝt , given that the actual state realized at t is st and that the agents follow the strategy profile σ . 
With definitions (5) and (6), Wi,t is the payoff of agent i after types are reported in period t , 
while Ui,t gives the infimum of the expected payoff before reporting. In contrast to Section 2, 
period-t flow utility u now appears inside of the expectation Eπ (and inside of the infimum) 
because the other agents’ types st

−i are not publicly observable. As a result, agent i is potentially 
uncertain about the distribution of the other agents’ current types as well as the distribution of 
future shocks, and he is averse to this uncertainty.

Given the information structure, we define an equilibrium strategy profile as a strategy profile 
σ e ∈ �N such that13

Ui,0
(
C

∣∣si,0 ) (
σ e

) ≥ Ui,0
(
C

∣∣si,0 ) (
σ e−i , σi

) ∀i, si,0, σi ∈ �.

Here 
(
σ e

−i , σi

)
denotes the strategy profile in which agent i uses strategy σi and any agent j 
= i

uses his respective equilibrium strategy σe
j . Given the agents’ preferences, this definition of an 

equilibrium strategy profile is natural: It implies that at t = 0, any agent i prefers to follow his 
equilibrium strategy σ e

i in all future periods, given that all other agents j 
= i also follow their 
equilibrium strategies σe

j . Finally, an allocation is incentive-compatible if σ ∗ is an equilibrium 

strategy profile.14

13 A reported state ŝt−1 does not appear in the t = 0 continuation utility Ui,0 because agents have not yet made reports.
14 For any C, Nash’s existence theorem and the finiteness of T , N , and � imply the existence of an equilibrium profile 
in mixed strategies. If preferences satisfy “no-hedging” (i.e., the expectation for any mixed strategy appears outside of 
the infimum in Ui,0) and we allow the policy functions of an allocation C to map a reported state ŝt to non-degenerate 
lotteries, a standard revelation principle justifies our focus on pure strategy equilibria. The results below are unaffected 
with this interpretation of an allocation.
14
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3.2. Constrained efficiency

With private shocks, the government can no longer observe the t = 0 state s0 before design-
ing a policy. As a result, it cannot evaluate the objective in problem (3) unless it is allowed to 
form beliefs in each period about agents’ types, which it can then use to take expectations over 
the unobservable state. We could expand the shock vector st to include a shock sg,t for the gov-
ernment, and define a belief set �g,t+1 that specifies the government’s beliefs about the agents’ 
types; another natural option is to choose one of the agents to serve as the government and use 
her beliefs to take expectations over the unobservable state in each period. We use this approach 
below, but the results generalize to any setting in which the government’s objective is of the 
Bergson-Samuelson form.

At t = 0, an agent is chosen uniformly at random to serve as the government and design a 
social insurance policy. Denote the index of the governing agent by g ∈ {1, . . . ,N}. Given social 
welfare weights η and the governing agent’s type sg,0, an allocation C∗ (

sg,0
)

is constrained-
efficient if

C∗ (
sg,0

) ∈ arg max
C

inf
�

(
sg,0

)Eπ

[∑
i

ηiUi,0
(
C

∣∣si,0 ) (
σ ∗)] (7)

subject to non-negativity and∑
i

[
ci,t

(
ŝt

) + ki,t+1
(
ŝt

)] ≤
∑

i

f
(
ki,t

(
ŝt−1

)
, zi,t

(
ŝt

)) ∀t, ŝt ,

Ui,0
(
C

∣∣si,0 ) (
σ ∗) ≥ Ui,0

(
C

∣∣si,0 ) (
σ ∗−i , σi

) ∀i, si,0, σi ∈ �.

Similarly to Section 2, we assume that the government has full commitment power in the 
following sense: Once the government chooses an allocation at t ≥ 0, it commits to delivering 
at least the period-t continuation utility promised to any truthfully-reporting agent, regardless of 
any possible future reforms; the government also commits to the incentives for truthful revelation, 
so that under any future reform, an agent who deviates from the truth-telling strategy at t cannot 
receive higher t continuation utility as a result of the reform.

3.3. Periodic reforms with private information

We next demonstrate that an analog of Proposition 1 holds. As with public information, the 
condition on agents’ beliefs is that today everyone allows for the possibility of everyone believing 
tomorrow that some of the states will not be realized the day after tomorrow. To simplify the 
exposition as before, we illustrate the results in the case where everyone allows for the possibility 
of everyone believing tomorrow that the economy will follow its worst path.

3.3.1. Belief condition
We extend the belief condition from Section 2 to the private information setting, but here it is 

convenient to give a more technical description.
Assume again there is a shock s such that for any agent i, any period t ≤ T −2, any period-t +

1 reported state ŝt+1, any period-t + 1 type st+1
i , and any strategy profile σ ,

(i) θi,t+2
(
s
) = θ ; and

(ii) π ∈ �i,t+3

(
ŝt+1,

(
st+1, s

)
, σ

)
implies π

(
sj,t+2 = s ∀j 
= i and si,t+3 = s

) = 1.
i

15
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As in Section 2, any agent who receives shock s realizes the worst skill θ and believes he will 
receive shock s again in the next period. With privately observed shocks, we now require that the 
agent also assumes the remaining agents also realized shock s. We continue to let s denote the 
shock and the shock vector 

(
s, . . . , s

)
when the distinction is clear from the context.

As before, we also assume that the set of shocks S is rich enough so that for any shock s, there 
is a shock s′ (s) that gives the same skill to the agent, but with a belief that everyone will receive 
s next period. That is, there exists a subset S′ ⊆ S and an idempotent mapping s′ : S → S′ such 
that for any agent i, any period t ≤ T − 2, any reported state ŝt , any type st

i , and any strategy 
profile σ ,

(i) θi,t+1
(
s′ (s)

) = θi,t+1 (s); but
(ii) π ∈ �i,t+2

(
ŝt ,

(
st
i , s

′ (s)
)
, σ

)
if and only if π

(
si,t+2 = s

) = 1 and there exists π̃ ∈
�i,t+2

(
ŝt ,

(
st
i , s

)
, σ

)
such that π |s−i,t+1

= π̃ |s−i,t+1
◦ (

s′)−1.

Here π |s−i,t+1
denotes the marginal distribution of s−i,t+1 under π . We also let π ◦ (

s′)−1
i,t+1

denote the pushforward measure of π when s′ is applied only to si,t+1 and the remaining agents’ 
shocks s−i,t are not shifted. The condition on beliefs is then

Assumption 2. For any t ≤ T − 2, ŝt−1, st , σ , i, and π ∈ �i,t+1
(
ŝt−1, st

i , σ
)
, we also have 

π ′ ∈ �i,t+1
(
ŝt−1, st

i , σ
)
, where π ′ = π ◦ (

s′)−1
i,t+1.

Similarly to Assumption 1, this requires that at the beginning of t , regardless of the reported 
state ŝt−1 or his own type st

i , any agent i considers the possibility of everyone being commonly 
certain at t +1 that skills will equal θ in all subsequent periods. The agent believes this is possible 
regardless of his beliefs about the other agents’ current shocks s−i,t or t + 1 skills θt+1.

Notice that private information introduces an additional complication because implementable 
allocations C must not only be feasible, but incentive-compatible. Enforcing incentives for truth-
telling is potentially a more difficult task for simplified allocations, because they depend less 
finely on future type reports. This is not a problem, however, for the allocations that satisfy a 
natural notion of monotonicity: We say that an allocation C is weakly monotone at t if for any 
agent i, any reported state ŝt−1, any type st

i , and any strategy σi ∈ �, the agent’s continuation 
utility Ui,t

(
C

∣∣ŝt−1, st
i

)(
σ ∗−i , σi

)
is weakly greater than his continuation utility when the other 

agents are certain to report shocks ŝ−i,t+1 ∈ s′ (SN−1
)

at t + 1 and the shock ŝ−i,t+τ = s for 
τ ≥ 2. Intuitively, since the agents have maxmin preferences, weak monotonicity ensures that any 
agent evaluates his utility of a deviation from truth-telling based on how the deviating strategy 
performs when the other agents realize shocks in S′ at t + 1 and the shock s in all subsequent 
periods.

3.3.2. Optimality of periodic reforms
Simplified, periodically-reformed policies are optimal with private information given the be-

lief condition in Assumption 2 and weak monotonicity:

Proposition 3. In any period t , any feasible, incentive-compatible, weakly monotone allocation 
C is weakly Pareto dominated by a feasible, incentive-compatible, weakly monotone simplified 
allocation Ct , i.e.,
16
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Ui,t

(
Ct

∣∣∣ŝt−1, st
i

)(
σ ∗) ≥ Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗) ∀i.

We again give an intuitive argument here and provide a detailed proof in Appendix A.4. Let 
t = 0, and consider an allocation C that is feasible, incentive-compatible, and weakly monotone. 
We can define a simplified allocation C0 so that, after any period t ≥ 0 reported state ŝt , C0

allocates consumption, effective labor, and capital according to what the original allocation C
prescribes in the reported state 

(
ŝ0, s

′ (ŝ1
)
, s, . . . , s

)
. Then C0 is feasible, and by the same argu-

ment as in the public information case, Assumption 2 implies that all agents weakly prefer C0 to 
C under the truth-telling strategy profile σ ∗.

However, with privately observed shocks, we must additionally verify that the simplified al-
location C0 is incentive-compatible. We already know that each agent i weakly prefers C0 to C
under the truth-telling strategy profile, and C is incentive-compatible by assumption:

Ui,0

(
C0

∣∣si,0 )(
σ ∗) ≥ Ui,0

(
C

∣∣si,0 ) (
σ ∗) ≥ max

σi∈�
Ui,0

(
C

∣∣si,0 ) (
σ ∗−i , σi

)
.

By weak monotonicity, agent i’s utility from any deviation σi is weakly lower when the other 
agents are certain to report a shock vector ŝ−i,1 ∈ S′N−1 at t = 1 and the shock vector s at t ≥ 2. 
Moreover, his maximum utility from a deviation σi is weakly lower when he is constrained to 
deviations σi that report a shock ŝi,1 ∈ S′ at t = 1 and the shock s at t ≥ 2. But these are precisely 
the conditions maintained by the simplified allocation C0, so we can lower bound agent i’s 
maximum utility from deviating under C by his maximum utility from deviating under C0:

max
σi∈�

Ui,0
(
C

∣∣si,0 ) (
σ ∗−i , σi

) ≥ max
σi∈�

Ui,0

(
C0

∣∣si,0 )(
σ ∗−i , σi

)
.

This chain of inequalities implies that C0 is incentive-compatible. Moreover, it implies that the 
inequality stated in the proposition actually holds with equality.

Just as in the public information case, applying Proposition 3 to the government’s problem 
(7) implies that any constrained-efficient allocation C∗ can be implemented by a simplified al-
location C0. However, in the presence of private information, the reform process becomes more 
complex. We assume that the government remains committed at t = 1 to the utility promises it 
made at t = 0 as well as the incentives it provided for truthful revelation. As a result, when seek-
ing to implement a reform C1, it must satisfy appropriate promise-keeping and threat-keeping 
constraints. The promise-keeping constraint requires that the government deliver at least as much 
t = 0 utility to every agent when the reform C1 is substituted for the t = 0 allocation C0 in 
periods t ≥ 1:

Ui,0

(
C0

0 ,
(
C1

τ

)T

τ=1

∣∣si,0 )(
σ ∗) ≥ Ui,0

(
C0

∣∣si,0 )(
σ ∗) ∀i, si,0.

This is equivalent to the promise-keeping constraint in the public information reform problem 
(4). The threat-keeping constraint requires that the government punish t = 0 deviations from 
truth-telling at least as much with the reform C1 as with the allocation C0:

Ui,0

(
C0

0 ,
(
C1

τ

)T

τ=1

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
≤ Ui,0

(
C0

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
∀i, si,0, σi,0.

This constraint has no analog in the public information reform problem (4) because it pertains 
directly to how the government incentivizes truthful revelation. Along with the t = 1 and t = 0
incentive-compatibility constraints, the threat-keeping constraint ensures that every agent weakly 
17
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prefers the truth-telling equilibrium at t = 0, even if C1 is substituted for C0 in the future. Next, 
we describe how the government constructs optimal reforms while respecting these new con-
straints.

3.3.3. Constructing optimal reforms
As in the public information case, the arguments above provide an algorithm for computing 

the simplified allocations 
{
Ct

}T

t=0, without first solving for the constrained-efficient allocation 
C∗. Rather, the sequence can be constructed by solving for an optimal reform in each period.

Corollary 2. Optimal simplified allocations 
{
Ct

}T

t=0 can be constructed period by period, with-
out computing the fully state-contingent allocation C∗.

In general, at any t ≥ 0 the government seeks to design a reform that maximizes period-t
social welfare. Suppose the allocation was last reformed in period r < t . Given the reported state 

ŝt−1 and the governing agent’s type st
g , an optimal reform C∗

(
ŝt−1, st

g,C
r
)

is a solution to the 
reform problem

max
C

inf
�g,t+1

(
ŝt−1,st

g

)Eπ

[∑
i

ηiUi,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗)] (8)

subject to non-negativity and∑
i

[
ci,τ

(
ŝτ

) + ki,τ+1
(
ŝτ

)] ≤
∑

i

f
(
ki,τ

(
ŝτ−1

)
, zi,τ

(
ŝτ

)) ∀τ ≥ t, ŝτ ≥ ŝt−1,

Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗) ≥ Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗−i , σi

) ∀i, st
i , σi ∈ �,

Ui,r

((
Cr

τ

)t−1
τ=r

,
(
Cτ

)T

τ=t

∣∣∣ŝr−1, sr
i

)(
σ ∗) ≥ Ui,r

(
Cr

∣∣∣ŝr−1, sr
i

)(
σ ∗) ∀i, sr

i ,

Ui,r

((
Cr

τ

)t−1
τ=r

,
(
Cτ

)T

τ=t

∣∣∣ŝr−1, sr
i

)((
σ ∗−i,τ , σi,τ

)t−1
τ=r

,
(
σ ∗

τ

)T

τ=t

)
≤ Ui,r

(
Cr

∣∣∣ŝr−1, sr
i

)((
σ ∗−i,τ , σi,τ

)t−1
τ=r

,
(
σ ∗

τ

)T

τ=t

)
∀i, sr

i ,
(
σi,τ

)t−1
τ=r

.

Note that the threat-keeping constraint in this problem involves punishments for multi-period 
deviations from truth-telling because the allocation may not have been reformed in the previous 
period. When t = 0, there are no promise-keeping or threat-keeping constraints.

If there exists an allocation in the constraint set and the optimal allocation is weakly monotone, 
arguments analogous to those in the proof of Proposition 3 imply that the government can choose 
a simplified allocation Ct to solve this reform problem (see Appendix A.5 for details). If at any 
t > 0 the constraint set is empty,15 then the government sets Ct ≡ Ct−1 and picks the equilibrium 
σ e of Ct with respect to the period-t utility functions Ui,t that maximizes period-t social welfare

inf
�g,t+1

(
ŝt−1,st

g

)Eπ

[∑
i

ηiUi,t

(
Ct

∣∣∣ŝt−1, st
i

)(
σ e

)]
.

15 If Cr is a simplified allocation, the constraint set must be non-empty at either r + 1 or r + 2 because Cr does not 
depend on reports made in any period t ≥ r + 2.
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This process then constructs a sequence of simplified allocations 
{
Ct

}T

t=0 that implements the 
constrained-efficient allocation C∗, without first solving for C∗.

3.3.4. History independence
Similarly to the public information case in Section 2.3, the structure of the reform problem (8)

characterizes conditions under which optimal policies may lose full dependence on the history 
of past reports ŝt−1. In particular, suppose that at t , each agent i’s belief set �i,t+1

(
ŝt−1, st

i , σ
)

does not depend on ŝt−2.16 If a reform at t can provide an improvement to previously designed 
government policies, i.e., if the promise- and threat-keeping constraints in the reform problem 
(8) do not bind at t , then the optimal reform Ct will not depend on the t − 2 reported state ŝt−2. 
The reasoning for this is analogous to that in Section 2.3: If �i,t+1

(
ŝt−1, st

i , σ
)

does not depend 
on ŝt−2 for each agent i, then the objective function and the incentive-compatibility constraint 
depend on ŝt−2 only through C, and the feasibility constraint depends on ŝt−2 only through C
and the (fixed) period-t capital distribution kt−1

t

(
ŝt−1

)
. Because of this, the government will 

choose Ct so that it does not depend on ŝt−2, conditional on the capital distribution kt−1
t

(
ŝt−1

)
.

With private information, such improvement and consequent loss of full history dependence 
require that the threat-keeping constraint be non-binding at t in addition to the promise-keeping 
constraint. Since the threat-keeping constraint does not appear in the public information reform 
problem (4), policies may lose history dependence less frequently when agents have private in-
formation about shocks si,t . This is because the government must provide incentives for truthful 
revelation in the current period, so it will generally condition an agent’s future consumption and 
effective labor on his current report. The government also commits to maintaining these incen-
tives even after subsequent reforms, and this may require that reforms maintain some dependence 
on the history of shocks. In contrast, with no uncertainty, loss of history dependence is generi-
cally suboptimal and can confer large welfare losses over policies with full history dependence 
(see, e.g., Kapička, 2017).

4. (In)Efficiency of competitive equilibria

In conventional, rational expectations versions of the economies above, competitive equilib-
ria result in constrained-efficient allocations even when types are privately known to agents.17

A common interpretation is that government-provided social insurance only crowds out insur-
ance provided by private markets (e.g., Acemoglu and Simsek, 2012). In this section, we discuss 
conditions under which this efficiency result survives in the presence of broader uncertainty, and 
conditions under which it breaks. The deciding factor is the relationship between (i) the firms’ 
uncertainty and (ii) the government’s uncertainty as expressed through its feasibility constraints. 
Whenever firms entertain a greater degree of uncertainty about the shock process than the gov-
ernment does, competitive equilibria may fail to provide efficient insurance. In other words, a 

16 For example, this will hold if the agents followed the truth-telling strategy profile σ∗ at t − 1 and if the belief sets 
�i,t+1

(
ŝt−1, st

i
, σ

)
are derived by using Bayes’ rule to update a fixed set of priors under which each agent’s shock 

follows a Markov process.
17 This holds when allocations are designed ex ante, or equivalently when at t = 0 agents are homogeneous and have 
observable shocks. The rational expectations versions of these economies closely resemble the “moral hazard” economies 
considered by Prescott and Townsend (1984), which they show can be decentralized efficiently. This should be distin-
guished from their “adverse selection” economies, in which competitive equilibria are generically inefficient (see, e.g., 
Bisin and Gottardi, 2006).
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broader view of uncertainty and resulting belief heterogeneity may create a meaningful role for 
the government provision of insurance.

Nevertheless, we also show that the results of previous sections persist in that insurance in a 
decentralized economy can be provided with sequences of simplified allocations that are period-
ically reformed.

4.1. Decentralization

Consider once again the economy of Section 3 in which agents are privately informed about 
their shocks si,t . As before, we illustrate our arguments in a simple special case and then dis-
cuss their generality. For direct contrast with rational expectations economies where competitive 
equilibria are known to be efficient, we consider an analogue of the “private-information labor 
market” economy of Prescott and Townsend (1984), modified to introduce broader uncertainty:18

There are two periods t ∈ {0,1}, with period 0 interpreted as an ex ante period in which agents are 
homogeneous and have publicly observable preferences. At t = 0 each agent receives the same 
publicly observed shock. Since this shock is fixed and observable, we suppress it in the notation 
below. Period-0 consumption c0, effective labor z0, and capital investment k1 are also taken to 
be fixed and equal across agents. Shocks remain private information at t = 1, so an allocation 
C = {c1 (s1) , z1 (s1)} is incentive-compatible if it induces truthful revelation at t = 1:19

Ui,1
(
C| si,1

) (
σ ∗) ≥ Ui,1

(
C| si,1

) (
σ ∗−i , σi

) ∀i, si,1, σi ∈ �.

To ensure that they are homogeneous at t = 0, all agents must share a common belief set �A,1 ⊆
� (S) that describes each agent’s beliefs about his t = 1 shock. Similarly, at t = 1 the skill 
mappings θi,1 and the belief mappings �i,2 are the same across agents.20 We assume that the 
belief set �i,2 (s) ⊆ � 

(
SN−1

)
for s ∈ S is exchangeable in the sense that for any belief π ∈

�i,2 (s), we also have π ◦ (sp)−1 ∈ �i,2 (s) for any permutation p of the indices {1, . . . ,N} \ {i}, 
where sp (s−i ) ≡ (

sp(j),1
)
j 
=i

.
To decentralize this economy, we introduce identical competitive firms that offer insurance 

contracts (allocations) to the agents. At t = 0, a (representative) firm forms an exchangeable set 
of beliefs �F,1 ⊆ � 

(
SN

)
about the agents’ t = 1 shocks that it uses to evaluate shock-contingent 

streams of profits. In particular, at t = 0 the firm assigns a given stream of profits d (s1) the value

V (d) ≡ inf
π∈�F,1

Eπ [d (s1)] . (9)

With this objective, the firm is not averse to risk, but it is potentially averse to uncertainty about 
the distribution of shocks at t = 1.

At t = 0, the firm chooses an allocation C to maximize its objective, subject to incentive-
compatibility at t = 1 and the constraint that it provide equilibrium reservation utility U to each 
agent:

max
C

V (d) (10)

18 Strictly speaking, Prescott and Townsend (1984) show efficiency in an economy with a representative agent; the 
arguments below also apply in this case.
19 The notion of incentive-compatibility here is consistent with that in Section 3, because we have simply relabeled the 
first period in which agents make reports.
20 Consistent with Section 3, �i,2 (s) here is a set of distribution over the other agents’ period-1 types s−i,1.
20
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subject to non-negativity and∑
i

ci,1
(
ŝ1

) + d
(
ŝ1

) =
∑

i

f
(
ki,1, zi,1

(
ŝ1

)) ∀ŝ1,

Ui,1
(
C| si,1

) (
σ ∗) ≥ Ui,1

(
C| si,1

) (
σ ∗−i , σi

) ∀i, si,1, σi ∈ �,

Ui,0 (C)
(
σ ∗) ≥ U ∀i.

A competitive equilibrium is an allocation Ce and reservation utility U such that

(i) Ce solves the firm’s problem (10) and delivers non-negative value to the firm;
(ii) each agent i contracts with the firm offering the best allocation and receives utility 

Ui,0 (Ce) (σ ∗) = U ; and
(iii) the feasibility constraints (2) hold for t = 1.

Consistent with Section 3, an allocation C∗ is constrained-efficient if

C∗ ∈ arg max
C

∑
i

Ui,0 (C)
(
σ ∗) ,

subject to non-negativity, feasibility, and incentive-compatibility. Note that we restrict to equal 
Pareto weights ηi = 1 because agents are homogeneous at t = 0.

4.2. (In)Efficiency

To ground our discussion, it is useful to begin with an example of the economy above in 
which competitive equilibria continue to be efficient in the presence of broader uncertainty: Let 
�F,1 = � 

(
SN

)
so that firms are maximally uncertain, and suppose toward a contradiction that a 

competitive equilibrium is inefficient, i.e., Ui,0 (C∗) (σ ∗) > U . Then C∗ must be in the constraint 
set of the firm’s problem. By reducing each agent i’s consumption after each shock vector s1 by a 
sufficiently small amount, the firm can modify C∗ so that it obtains positive profits d (s1) > 0 for 
each shock vector while respecting the incentive-compatibility and reservation utility constraints. 
This implies that the equilibrium allocation Ce does not solve the firm’s problem, a contradiction.

Efficiency survives in this example because a familiar duality between the government’s prob-
lem and the firm’s problem is maintained. This is apparent if we note that, since �F,1 = � 

(
SN

)
, 

the feasibility constraints (2) observed by the government can be written

inf
�F,1

Eπ

{∑
i

[
f

(
ki,1, zi,1 (s1)

) − ci,1 (s1)
]} ≥ 0.

The left side of this inequality is precisely the value that the firm derives from the allocation C =
{c1 (s1) , z1 (s1)}, which must equal zero in equilibrium. Intuitively, agents must obtain at least 
utility Ui,0 (C∗) in equilibrium due to competitive pressures; they cannot obtain more, because 
the symmetry between the firm’s objective and the government’s feasibility constraint would 
imply that the equilibrium allocation is feasible for the government and delivers greater utility 
than the constrained-efficient allocation.

This suggests that competitive equilibria may not be efficient when this duality between the 
government’s problem and the firm’s problem is broken. In an economy with uncertainty about 
the distribution of agents’ shocks, this happens naturally whenever firms entertain a greater or 
lesser degree of uncertainty than the government. For a sharp example, suppose that firms are 
21
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still maximally uncertain, with �F,1 = � 
(
SN

)
. Suppose, however, that the agents and the gov-

ernment are Bayesian, with a single belief π∗ ∈ � 
(
SN

)
at t = 0 about the distribution of the 

t = 1 shock vector s1. Then a natural treatment of feasibility, consistent with the approach in 
rational expectation economies, is to require that the government maintain positive expected net 
resources under π∗:

Eπ∗

{∑
i

[
f

(
ki,1, zi,1 (s1)

) − ci,1 (s1)
]} ≥ 0. (11)

This constraint is weaker than the more stringent pointwise constraints (2). When the pointwise 
constraints are replaced with (11) in the government’s problem and in the definition of a compet-
itive equilibrium, competitive equilibria do not generally deliver the constrained-efficient level 
of utility:

Proposition 4. Competitive equilibria with uncertainty may not be efficient.

To see this, suppose that π∗ is such that the agents’ shocks are independently and identically 
distributed, and that each agent realizes skills θ and θ̄ with equal probability. The constrained-
efficient allocation C∗ under the weakened feasibility constraint (11) will generally feature a 
deficit for the state in which each agent realizes skill θ . However, such an allocation would 
deliver negative value to the firm under the objective (9), so it cannot be sustained in a competitive 
equilibrium. As a result, any competitive equilibrium must be inefficient.

More broadly, this discussion shows that if the government and firms form heterogeneous 
beliefs in response to uncertainty about the data-generating process, the government and com-
petitive markets may implement different outcomes. In this sense, broader uncertainty can be 
viewed as a friction that prevents the proper functioning of competitive markets. In particular, 
whenever the firms entertain a greater degree of uncertainty about the shock process than the 
government, competitive equilibria may fail to provide the efficient amount of insurance.21

4.3. Periodic reforms in equilibrium

Even with the potential for inefficiency, agents may still obtain some degree of insurance in a 
decentralized economy. We next argue that any insurance provided by competitive firms can be 
obtained with simplified allocations that are periodically reformed.

Consider a dynamic extension of the decentralized economy described above: Firms and 
agents continue to contract at t = 0, but at the end of each period t firms may also trade a 
risk-free bond b in zero net supply that pays one unit of consumption at t + 1. Let qt

(
ŝt , σ

)
denote the equilibrium price of the risk-free bond after reported history ŝt when agents follow 
the strategy profile σ . Extending the firm’s problem from Section 4.1, the firm chooses an allo-
cation C and bond purchases 

{
bt

(
ŝt

)}T

t=0 to maximize its period-1 value V1. Given a reported 
state-contingent stream of profits D ≡ {dt }Tt=0, a t − 1 reported state ŝt−1, and a strategy profile 
σ for the agents, the firm’s period-t continuation value is

Vt

(
D| ŝt−1

)
(σ ) ≡ inf

�F,t

(
ŝt−1,σ

)Eπ

[
dt

(
ŝt−1, σt

(
ŝt−1, st

))

21 Interestingly, a symmetric argument to the one given above suggests that if the firms entertain less uncertainty than 
the government, competitive equilibria may deliver greater utility to agents than the constrained-efficient allocation.
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+ qt

(
ŝt−1, σt

(
ŝt−1, st

)
, σ

)
Vt+1

(
D| ŝt−1, σt

(
ŝt−1, st

))
(σ )

]
,

where �F,t

(
ŝt−1, σ

) ⊆ � 
(
SN(t+1)

)
is the firm’s set of beliefs about the period-t state st .

A competitive equilibrium is then defined as in Section 4.1, extended to include the market-
clearing condition for bt

(
ŝt

)
and the baseline feasibility constraints (2) for all t and all ŝt . If 

we again maintain Assumption 2, as well as its analogue for the firm’s beliefs �F,t

(
ŝt−1, σ

)
, a 

decentralized version of Proposition 3 holds:

Proposition 5. For any set of prices 
{
q

(
ŝt , σ ∗)}T −1

t=0 , any weakly monotone competitive equilib-
rium allocation Ce with associated profit stream De is weakly Pareto dominated by a weakly 
monotone simplified allocation C0 with associated profit stream D0, i.e.,

Ui,0

(
C0 |s0

)(
σ ∗) ≥ Ui,0

(
Ce |s0

) (
σ ∗) ∀s0,∀i,

V1

(
D0 |s0

)(
σ ∗) ≥ V1

(
De |s0

) (
σ ∗) .

The intuition for the result and the construction of the simplified allocation C0 are essentially 
the same as in Proposition 3.

5. Linearity

Finally, we consider whether even simpler linear or affine policies can be optimal.22 In par-
ticular, we ask when an optimal simplified allocation Ct can be implemented with fiscal policies 
that are affine in individual income, f

(
ki,t , zi,t

)
. We argue that this is not generally the case: One 

must place strong assumptions on agents’ beliefs and on allocations for affine policy functions 
to be optimal, and there are substantive limitations to generalizations. For example, risk aversion 
provides a significant roadblock, as does elastically supplied labor. When linearity does persist, 
we show that it is with respect to an agent’s skill shock, which is generally not equivalent to 
linearity in income.

It suffices to consider again the baseline public information economy of Section 2. We main-
tain Assumption 1, and we additionally assume the following:

Assumption 3. For any t ≤ T − 1, st , i and π ∈ �i,t+1
(
st

)
, there also exists π̃ ∈ �i,t+1

(
st

)
, 

such that

1. θi,t+1 and θ−i,t+1 are independent under π̃ ;
2. π̃ and π imply the same marginal distribution of θ−i,t+1;
3. the distribution of θi,t+1 under π̃ places weight only on 

{
θ, θ̄

}
to satisfy Eπ̃

[
θi,t+1

] =
Eπ

[
θi,t+1

]
.

For example, this assumption is satisfied if at each t , each agent i considers all beliefs π such 
that his t + 1 skill θi,t+1 is independently distributed from the other agents’ skills θ−i,t+1 and 

22 This linearity conjecture is motivated in part by the findings that, under some conditions, uncertainty can lead to 
linearity in financial contracting (see, e.g., Carroll, 2015; Zhu, 2016). A further, applied motivation is strongly suggested 
by a vast Ramsey optimal taxation literature that typically starts with an ad hoc restriction to linear or affine policy 
instruments.
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such that the expectation of θi,t+1 under π equals some fixed value θ̃ . We require independence 
to ensure that agent i’s beliefs about other agents’ skills do not change how he evaluates ex-
pectations with respect to his own skill. This is essential to the arguments, because the linearity 
conjecture concerns policies or continuation utilities that are linear with respect to agent i’s skill, 
holding other agents’ skills fixed. In addition, we note that by contrast with Assumption 1, the 
arguments below do not generalize immediately under weaker versions of Assumption 3.

We maintain Assumption 1, so Proposition 1 implies that the efficient allocation C∗ can be 
implemented by a sequence of simplified allocations 

{
Ct

}T

t=0. For the arguments below it is also 
crucial to note that in the period-t allocation Ct , the consumption and effective labor functions {
ct
i,τ , z

t
i,τ

}T

τ=t
for each agent i depend only on st and θt+1 ≡ (

θ1,t+1, . . . , θN,t+1
)
. Recall that 

this holds because Ct can be constructed by assuming that all agents will realize a shock s′ ∈ S′
at τ = t + 1, implying the degenerate belief set �i,t+2

(
st , s′ (st+1)

) = {
π

}
, and the shock s at 

τ ≥ t + 2.
Let us now focus on conditions under which the solution to the period-t reform problem (4)

features linear (affine) policy functions or linearity in agents’ flow utilities with respect to their 
skills. We address the latter in detail, and at the end of the section we describe the additional 
assumptions needed for linear policy functions to be optimal. To state the result, we begin by 
examining the solution C0 (s0) to the government’s t = 0 problem and considering how to modify 
it so that agent i’s t = 1 continuation utility is affine in his skill shock θi,1.

To make the argument as clear as possible, we illustrate it in the context of Fig. 1. Holding (
s0, θ−i,1

)
fixed, let u0

i,1

(
θi,1

) ≡ u 
(
c0
i,1 (s0, θ1) , z0

i,1 (s0, θ1) /θi,1

)
denote agent i’s t = 1 flow 

utility, the solid line in Fig. 1. This function is typically not affine and so does not coincide with 
its secant line from θi,1 = θ to θi,1 = θ̄ , the dot-dashed line in Fig. 1. Define new policy functions 
ĉi,1, ̂zi,1 such that for any fixed 

(
s0, θ−i,1

)
, ûi,1

(
θi,1

) ≡ u 
(
ĉi,1, ẑi,1/θi,1

)
is equal to u0

i,1

(
θi,1

)
for 

θi,1 ∈ {
θ, θ̄

}
but is affine over �. That is, ûi,1

(
θi,1

)
is the function of the secant line of u0

i,1

(
θi,1

)
from θi,1 = θ to θi,1 = θ̄ , and its graph is given by the dot-dashed line in Fig. 1.

If feasible, the government would like to deliver utility ûi,1
(
θi,1

)
wherever u0

i,1

(
θi,1

)
falls 

below its secant line. In particular, the government would like to use the policy functions či,1, ̌zi,1

defined by

(
či,1 (s0, θ1) , ži,1 (s0, θ1)

) =
{(

ĉi,1 (s0, θ1) , ẑi,1 (s0, θ1)
)

if ûi,1
(
θi,1

) ≥ u0
i,1

(
θi,1

)
,(

c0
i,1 (s0, θ1) , z0

i,1 (s0, θ1)
)

else.

The agent’s utility ǔi,1
(
θi,1

) ≡ u 
(
či,1, ži,1/θi,1

)
under these new policy functions is then the 

maximum of the utilities ûi,1
(
θi,1

)
and u0

i,1

(
θi,1

)
, given by the dashed line in Fig. 1.

For t > 1, we define ĉi,t , ̂zi,t and či,t , ̌zi,t similarly to that above: Agent i’s period t flow 

utility under allocation C0 is given by u 
(
c0
i,t (s0, θ1) , z0

i,t (s0, θ1) /θ
)

, so we let ĉi,t , ̂zi,t be such 

that for fixed 
(
s0, θ−i,1

)
, u 

(
ĉi,1, ẑi,1/θ

)
is the function of the secant line of u 

(
c0
i,1, z

0
i,1/θ

)
from 

θi,1 = θ to θi,1 = θ̄ . We then define či,t , ̌zi,t analogously to how či,1, ̌zi,1 are defined, delivering 
the maximum of the period-t flow utilities under the other two allocations. Finally, at t = 0 let

{
či,0, ži,0

} = {
ĉi,0, ẑi,0

} =
{
c0
i,0, z

0
i,0

}
.
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Fig. 1. Linearity in agents’ utilities with respect to their skills.

Feasibility constraints may preclude the government from using the policy functions{
či,t , ži,t

}T

t=0, but as Fig. 1 indicates, these are clearly preferred by agent i to 
{
c0
i,t , z

0
i,t

}T

t=0

and 
{
ĉi,t , ẑi,t

}T

t=0.

We next show that the agent is actually indifferent between the policy functions 
{
či,t , ži,t

}T

t=0

and 
{
ĉi,t , ẑi,t

}T

t=0.

Proposition 6. Let Ĉi ≡
{
ĉi,t , ẑi,t , k

0
i,t+1

}T

t=0
, Či ≡

{
či,t , ži,t , k

0
i,t+1

}T

t=0
. Then

Ui,0

(
Ĉi |s0

)
= Ui,0

(
Či |s0

)
.

We provide a proof in Appendix A.6, but the idea can be seen in Fig. 1. When considered 
as a function of θi,1 with fixed 

(
s0, θ−i,1

)
, agent i’s flow utility at t ≥ 1 under Či (the dashed 

line) lies weakly above its secant line from θi,1 = θ to θi,1 = θ̄ (the dot-dashed line). The “worst” 
belief distributions π̃ ∈ �i,1 (s0), and thus the ones considered by the agent when evaluating 
his t = 1 continuation utility, are then those that are supported on 

{
θ, θ̄

}
. However, this only 

holds because of the independence of θi,1 and θ−i,1 under each π ∈ �i,1 (s0). If independence is 
violated and the distribution of θi,1 conditional on θ−i,1 changes with θ−i,1, agent i’s expected 
t = 1 utility with the belief π may instead be weakly lower than his expected t = 1 utility with 
the corresponding belief π̃ .

Since agent i only considers distributions of the form π̃ ∈ �i,1 (s0) when evaluating his ex-
pected t = 1 utility, it is easy to see that he is indifferent between Či and Ĉi . Under Ĉi , the 
agent’s t ≥ 1 flow utility is affine in θi,1, and it coincides with the flow utility under Či when 
θi,1 ∈ {

θ, θ̄
}
. Distributions of the form π̃ place weight only on events with θi,1 ∈ {

θ, θ̄
}
, so agent 

i’s expected t = 1 utility is the same under Či and Ĉi . These allocations also give him the same 
t = 0 flow utility, so the agent is indifferent between Či and Ĉi .

Proposition 6 implies that the government weakly prefers the allocation Ĉi , for which agent 
i’s t ≥ 1 flow utility is affine in θi,1, to C0

i . The government will always seek to design t = 0
allocations in which each agent’s flow utility at t ≥ 1 is affine in his own t = 1 skill. However, 
the assumptions needed to prove this result are so strong that, on the basis of the argument above, 
affine policies cannot be expected to be optimal in practice. For example, the proof of Proposi-
tion 6 makes heavy use of the independence condition in Assumption 3, but it is not clear why an 
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uncertain agent would restrict his beliefs to product distributions. Another serious issue regards 
feasibility: We can clearly assume without loss of generality that the feasibility constraints in 
the t = 0 government’s problem will bind, so the intermediate allocation Či constructed above is 
almost certain to be infeasible. In this case, the allocation Ĉi may also be infeasible.

Moreover, to obtain a more concrete property we must make the additional assumption that 
labor supply is inelastic. In particular, suppose that at t = 0, the government is constrained so 
that at each t ≥ 1, agent i will exert some fixed amount of labor l̄i,t (s0). If this is the case, then 
agent i’s t = 1 skill θi,1 affects his t ≥ 1 flow utility only through consumption, and we can use 
the same methods as above to show that the government weakly prefers consumption functions 
that are affine in an agent’s own skill. The following proposition collects these observations:

Proposition 7. Fix i. If t ≥ 1 labor supply is inelastic, agent i weakly prefers 
{
c0
i,0, ĉi,t

}T

t=1
to {

c0
i,t

}T

t=0
, where ĉi,t t ≥ 1 is the affine consumption function given by

ĉi,t (s0, θ1) ≡ θ̄ − θi,1

θ̄ − θ
c0
i,t

(
s0,

(
θ, θ−i,1

)) + θi,1 − θ

θ̄ − θ
c0
i,t

(
s0,

(
θ̄ , θ−i,1

))
.

6. Concluding remarks

This paper studied the optimal fiscal policy implications of uncertainty about the distribution 
of shocks in an otherwise conventional dynamic economy, and characterized general properties 
of policies that are robust with respect to such uncertainty. We described conditions under which 
optimal policies are simplified in the sense that they are not fully contingent on future shocks, lose 
dependence on the full history of past shocks, and are reformed periodically, consistent with what 
is commonly observed in reality. We argued, however, that restrictive assumptions are required 
for linear policies to be optimal. In contrast to rational expectations environments, decentralized 
versions of these economies are not generally efficient, implying a potentially meaningful role 
for the government provision of insurance.

While this paper focused on social insurance and fiscal policies, the above insights are appli-
cable to risk-sharing environments more broadly. We believe that the paper also opens a number 
of interesting questions for future research. One significant possible extension is to environments 
where exogenous lack of commitment on the part of the agents is a salient friction. Applica-
tions include wage contracting between a firm and its workers who are free to walk away from 
long-term contracts, informal insurance arrangements in village economies, as well as other con-
texts in development economics. State-run (rather than federally-run) risk-sharing programs are 
another example of broader risk-sharing environments where enforcement of contracts may be 
difficult given relatively low costs of moving to a different state.

One approach to such situations is to characterize contracts that are self enforcing, i.e., that 
provide incentives to stay within the contract. When uncertainty about the distribution of payoff-
relevant variables of the kind discussed in this paper is also present, our methods can be used to 
characterize properties of optimal contracts. In particular, self-enforcement constraints with an 
exogenously specified outside option can be included in our optimal reform problems, and by 
solving such reform problems in each period, a sequence of optimal, simplified, self-enforcing 
allocations can be characterized without the need to construct a complete constrained-efficient 
allocation. This property may provide novel insights about optimal self-enforcing contracts in 
environments with uncertainty.
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Appendix A. Proofs and additional details

A.1. Proof of Proposition 1

We will construct a t = 0 simplified allocation C0 = {
c0
t , z

0
t , k

0
t

}T

t=0 such that each agent 
weakly prefers C0 to C. First define{

c0
0, z

0
0, k

0
1

}
≡ {c0, z0, k1} .

Thus C0 and C coincide at t = 0. For t ≥ 1, define

c0
t

(
st

) ≡ ct

(
s0, s

′ (s1) , s, . . . , s
)
,

z0
t

(
st

) ≡ zt

(
s0, s

′ (s1) , s, . . . , s
)
,

k0
t+1

(
st

) ≡ kt+1
(
s0, s

′ (s1) , s, . . . , s
)
.

At t ≥ 1, regardless of the realized state st , C0 allocates consumption, effective labor, and capital 
as if a shock vector of the form s′ ∈ S′N were realized at t = 1 and the shock vector s were 
realized in every subsequent period.

To see that each agent i weakly prefers C0 to C, fix an initial state s0 and let �′
i,1 (s0) ⊆

�i,1 (s0) be all beliefs of the form π ′ = π ◦ (
s′)−1. Assumption 1 implies that �′

i,1 (s0) is non-
empty, and we have

Ui,0 (C |s0 ) = u

(
ci,0 (s0) ,

zi,0 (s0)

θi,0
(
si,0

)
)

+ β inf
�i,1(s0)

Eπ

[
Ui,1

(
C

∣∣∣s1
)]

≤ u

(
ci,0 (s0) ,

zi,0 (s0)

θi,0
(
si,0

)
)

+ β inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C

∣∣∣s1
)]

= u

(
c0
i,0 (s0) ,

z0
i,0 (s0)

θi,0
(
si,0

)
)

+ β inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C0

∣∣∣s1
)]

≤ u

(
c0
i,0 (s0) ,

z0
i,0 (s0)

θi,0
(
si,0

)
)

+ β inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣s1
)]

= Ui,0

(
C0 |s0

)
.

The key step is the fourth line, which makes substantial use of Assumption 1: By definition, the 
t ≥ 1 policy functions 

{
c0
t , z

0
t , k

0
t+1

}T

t=1
in C0 depend only on the t = 0 shock vector s0 and the 

shock vector s′ (s1) corresponding to each t = 1 shock vector s1. Since s′ is idempotent, any be-
lief π ∈ �i,1 (s0) and its corresponding belief π ′ = π ◦ (

s′)−1 have the same implied distribution 
of the shock vectors s′ (s1), and hence the same implied distribution of future consumption and 
effective labor allocated to each agent. However, under the distribution π , it is possible that agent 
i could realize a skill θi,t 
= θ at some t ≥ 2. With this realization, the agent’s period-t flow utility 
would be strictly higher than if he realized the skill θ . Given the recursive definition of Ui,1, this 
implies that the expected t = 1 continuation utility under π ′ is weakly lower than the expected 
t = 1 continuation utility under π :

Eπ ′
[
Ui,1

(
C0

∣∣∣s1
)]

≤ Eπ

[
Ui,1

(
C0

∣∣∣s1
)]

.
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Assumption 1 implies that for each belief π ∈ �i,1 (s0), there exists a corresponding belief π ′ ∈
�′

i,1 (s0), so we can take infima on both sides to find

inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C0

∣∣∣s1
)]

≤ inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣s1
)]

,

and the fourth line then follows. �
A.2. More general belief conditions example

Suppose there are three periods t ∈ {0,1,2}, three potential shocks S = {
s, ṡ, s̈

}
, and three 

potential skills � =
{
θ, θ̌ , θ̄

}
, where θ < θ̌ < θ̄ . At t = 2, the skill mappings θi,2 (s) are defined 

by

θi,2 (s) =

⎧⎪⎨
⎪⎩

θ if s = s,

θ̌ if s = ṡ,

θ̄ if s = s̈.

At t = 1, the skill mappings θi,1 (s) can be chosen arbitrarily, though we require θi,1 (s̈) = θi,1 (ṡ). 
Define the mapping s2 : S → S by

s2 (s) =

⎧⎪⎨
⎪⎩

s if s = s,

ṡ if s = ṡ,

ṡ if s = s̈.

At t = 1, the belief sets �i,2
(
s0,

(
s̈, s−i,1

))
can be chosen arbitrarily, though for simplicity we 

will assume that �i,2 is constant with respect to s−i,1. We will assume that

�i,2
(
s0,

(
s, s−i,1

)) = �i,2
(
s0,

(
ṡ, s−i,1

)) = �i,2,

where �i,2 consists precisely of beliefs of the form π = π ◦ s−1
2 for π ∈ �i,2

(
s0,

(
s̈, s−i,1

))
. 

Here π assigns probabilities according to

π
(
sA,2, sB,2

) = π
(
s−1

2

(
sA,2, sB,2

))
.

Thus �i,2 is defined such that π ∈ �i,2 if and only if π is supported on s2

(
S2

)
and there exists 

a belief π ∈ �i,2
(
s0,

(
s̈, s−i,1

))
such that the distribution of s2 (s2) under π is π . Finally, define 

the mapping s′
1 : S → S by

s′
1 (s) =

⎧⎪⎨
⎪⎩

s if s = s,

ṡ if s = ṡ,

ṡ if s = s̈.

Then �i,1 (s0) can be chosen arbitrarily, subject to the following restriction: For any π ∈
�i,1 (s0), we also have π ′ ∈ �i,1 (s0), where π ′ = π ◦ (

s′
1

)−1. Thus π ′ is the distribution sup-
ported on s′

1

(
S2

)
such that the distribution of s′

1 (s1) under π is π ′.
For an interpretation of this setup, we will see below that the mappings s′

1 and s2 identify 
the subset of states that simplified allocations C0 must take into account. In this economy, an 
allocation C0 is simplified if it depends only on the shifted state 

(
s0, s

′ (s1) , s (s2)
)

rather than 
1 2
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the full state s2. This definition strictly generalizes the one given in Section 2, and we can recover 
the original definition of a simplified allocation by taking s2 to be the constant map s2 (s) ≡ s. By 
considering a non-constant map s2, we can avoid assuming that agents may receive a degenerate 
belief set 

{
π

}
at t = 1. Indeed, at t = 0 agents no longer have to consider the possibility that 

they will be certain at t = 1 that a particular shock vector will be realized at t = 2. Rather, 
our assumption on beliefs �i,1 (s0) requires that agents consider the possibility that they will 
be certain at t = 1 that the shock vector at t = 2 will fall in a subset s2

(
S2

) ⊆ S2. The more 
technical aspect of our assumption states that after a “pessimistic” t = 1 shock vector s′

1 (s1), 
each agent’s beliefs �i,2

(
s0, s

′
1 (s1)

)
are essentially his beliefs �i,2 (s0, s1) after the shock s1, 

but shifted so that they place full support on s2

(
S2

)
. The significance of this condition will be 

clear below when we demonstrate the optimality of simplified allocations.
With this setup, the following version of Proposition 1 holds: Any allocation C is weakly 

Pareto-dominated by another allocation C0 that is simplified in the sense that the allocation 
functions depend only on 

(
s0, s

′
1 (s1) , s2 (s2)

)
. To see this, we begin by defining C0 from C. At 

t = 0, keep the allocation unchanged, and set{
c0

0 (s0) , z0
0 (s0) , k0

1 (s0)
}

≡ {c0 (s0) , z0 (s0) , k1 (s0)} .

At t = 1, define C0 such that if the state (s0, s1) is realized at t = 1, each agent is allocated 
according to what C would have prescribed if the state 

(
s0, s

′
1 (s1)

)
were realized. For example, 

c0
1 satisfies

c0
1 (s0, s1) ≡ c1

(
s0, s

′
1 (s1)

)
.

Finally, at t = 2, define C0 such that if the state (s0, s1, s2) is realized at t = 2, each agent 
is allocated according to what C would have prescribed if the state 

(
s0, s

′
1 (s1) , s2 (s2)

)
were 

realized. In this case, c0
2 satisfies

c0
2 (s0, s1, s2) ≡ c2

(
s0, s

′
1 (s1) , s2 (s2)

)
.

We claim that each agent i weakly prefers C0 to C at t = 0. To see this, note that since C0

and C coincide at t = 0, it suffices to show

inf
�i,1(s0)

Eπ

[
Ui,1

(
C

∣∣∣s1
)]

≤ inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣s1
)]

.

Since agent i is averse to uncertainty, we can bound the left side above by the expected continu-
ation utility under the subset �′

i,1 (s0) ⊆ �i,1 (s0) of beliefs of the form π ′:

inf
�i,1(s0)

Eπ

[
Ui,1

(
C

∣∣∣s1
)]

≤ inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C

∣∣∣s1
)]

.

Under any belief π ′, agent i assumes that only shock vectors in s′
1

(
S2

)
can be realized at t = 1

and only shock vectors in s2

(
S2

)
can be realized at t = 2. However, C0 is defined so that it 

coincides with C along such paths. As a result, we can replace C with C0 when evaluating 
expected t = 1 continuation utility using the belief π ′:

inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C

∣∣∣s1
)]

= inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C0

∣∣∣s1
)]

.

To complete the argument, we must show that we can replace �′
i,1 (s0) in the infimum on the 

right side by the superset �i,1 (s0) without lowering the value of the infimum. We begin by 
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noting that for any t = 1 shock vector s1, agent i’s t = 1 continuation utility in state (s0, s1) is 
weakly greater than his continuation utility in state 

(
s0, s

′
1 (s1)

)
. This follows from

Ui,1

(
C0

∣∣∣ s0, s1

)
= u

(
c0
i,1 (s0, s1) ,

z0
i,1 (s0, s1)

θi,1
(
si,1

)
)

+ inf
�i,2(s0,s1)

Eπ

[
Ui,2

(
C0

∣∣∣ s0, s1, s2

)]

= u

(
c0
i,1

(
s0, s

′
1 (s1)

)
,
z0
i,1

(
s0, s

′
1 (s1)

)
θi,1

(
s′

1

(
si,1

))
)

+ inf
�i,2(s0,s1)

Eπ

[
Ui,2

(
C0

∣∣∣ s0, s
′ (s1) , s2

)]

≥ u

(
c0
i,1

(
s0, s

′
1 (s1)

)
,
z0
i,1

(
s0, s

′
1 (s1)

)
θi,1

(
s′

1

(
si,1

))
)

+ inf
�i,2

(
s0,s

′
1(s1)

)Eπ

[
Ui,2

(
C0

∣∣∣ s0, s
′ (s1) , s2

)]

= Ui,1

(
C0

∣∣∣ s0, s
′
1 (s1)

)
.

The second equality holds because the definition of s′
1 implies θi,1

(
si,1

) = θi,1
(
s′

1

(
si,1

))
, and 

by construction the t ≥ 1 allocation functions c0
i,t and z0

i,t are invariant under the mapping 
s′

1. The inequality holds because the t = 2 allocation functions c0
i,2 and z0

i,2 depend only 
on 

(
s0, s

′
1 (s1) , s2 (s2)

)
, the map s2 is idempotent, and the agent’s beliefs are such that π ∈

�i,2
(
s0, s

′
1 (s1)

)
if and only if π is supported on s2

(
S2

)
and there exists a belief π ∈ �i,2 (s0, s1)

such that the distribution of s2 (s2) under π is π . We have an inequality here instead of an equal-
ity because under a belief π ∈ �i,2 (s0, s1), agent i may receive skill θi,2

(
si,2

) = θ̄ and achieve 
a greater t = 2 continuation utility. Since this inequality holds for each shock vector s1, we must 
have

inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣ s1
)]

≥ inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣ s0, s
′
1 (s1)

)]
.

But by assumption, for any belief π ∈ �i,1 (s0), there exists another belief π ′ ∈ �′
i,1 (s0) such 

that

Eπ

[
Ui,1

(
C0

∣∣∣ s0, s
′
1 (s1)

)]
= Eπ ′

[
Ui,1

(
C0

∣∣∣ s0, s
′
1 (s1)

)]
= Eπ ′

[
Ui,1

(
C0

∣∣∣ s0, s1

)]
.

The second equality holds because s′
1 is idempotent. Using the previous inequality and the fact 

that �′
i,1 (s0) ⊆ �i,1 (s0), we have

inf
�′

i,1(s0)
Eπ ′

[
Ui,1

(
C0

∣∣∣ s1
)]

= inf
�i,1(s0)

Eπ

[
Ui,1

(
C0

∣∣∣ s1
)]

.

As a result, we can conclude that agent i weakly prefers C0 to C at t = 0.

A.3. Details of Proposition 3 assumptions

It will be useful to give a technical description of weak monotonicity. Given a strategy σi ∈ �, 
let σ t denote the strategy defined by
i
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σ t
i,τ

(
ŝτ−1, sτ

i

)
≡

⎧⎪⎨
⎪⎩

σi,t

(
ŝt−1, st

i

)
τ ≤ t,

σi,t+1
(
ŝt ,

(
st
i , s

′ (si,t+1
)))

τ = t + 1,

s τ ≥ t + 2.

(12)

Thus σ t
i coincides with σi through period t . At t +1, an agent using reporting strategy σ t

i reports 
as if he realized the shock s′ (si,t+1

)
and if he were using the reporting strategy σi . In period 

τ ≥ t + 2, the strategy σ t
i always reports shock s.

With this definition, an allocation C is weakly monotone at t if for any agent i, any t − 1
reported state ŝt−1, any type st

i , and any strategy σi ∈ �,

Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗−i , σi

) ≥ Ui,t

(
C

∣∣∣ŝt−1, st
i

)(
σ ∗t

−i , σi

)
This condition implies that if the −i agents report truthfully, then regardless of the reporting 
strategy used by agent i, his continuation utility at t + 1 is weakly greater than his continuation 
utility when the −i agents report shocks in S′ at t + 1 and the shock s at τ ≥ t + 2.

A.4. Proof of Proposition 3

We will construct a t = 0 simplified allocation C0 = {
c0
t , z

0
t , k

0
t

}T

t=0 that is feasible, incentive-
compatible, and is weakly preferred by each agent to the original allocation C. Let{

c0
0, z

0
0, k

0
1

}
≡ {c0, z0, k1} ,

so that C0 and C coincide at t = 0. For t ≥ 1, define

c0
t

(
ŝt

) ≡ ct

(
ŝ0, s

′ (ŝ1
)
, s, . . . , s

)
,

z0
t

(
ŝt

) ≡ zt

(
ŝ0, s

′ (ŝ1
)
, s, . . . , s

)
,

k0
t+1

(
ŝt

) ≡ kt+1
(
ŝ0, s

′ (ŝ1
)
, s, . . . , s

)
.

Thus at t ≥ 1, C0 allocates consumption, effective labor, and capital as if a shock vector of the 
form s′ ∈ s′ (SN

)
was reported at t = 1 and the shock vector s was reported in every subsequent 

period.
Under the truth-telling strategy profile σ ∗, all agents weakly prefer C0 to C. To see this, fix 

any initial state s0 and any i. Let �′
i,1

(
si,0

) ⊆ �i,1
(
si,0

)
be the set of all beliefs of the form 

π ′ = π ◦ (
s′)−1

i,1 for π ∈ �i,1
(
si,0

)
. Assumption 2 implies that �′

i,1

(
si,0

)
is non-empty, and we 

have

Ui,0
(
C

∣∣si,0 ) (
σ ∗) = inf

�i,1
(
si,0

)Eπ

[
Wi,0

(
C

∣∣s0, si,1
) (

σ ∗)] (13)

≤ inf
�′

i,1

(
si,0

)Eπ ′
[
Wi,0

(
C

∣∣s0, si,1
) (

σ ∗)]
= inf

�′
i,1

(
si,0

)Eπ ′
[
Wi,0

(
C0

∣∣s0, si,1

)(
σ ∗)]

≤ inf
�i,1

(
si,0

)Eπ

[
Wi,0

(
C0

∣∣s0, si,1

)(
σ ∗)]

= Ui,0

(
C0

∣∣si,0 )(
σ ∗) .
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The key step is again the fourth line, and it holds by essentially the same argument as in the 
public information case: Let π ′ ∈ �′

i,1

(
si,0

)
, and let π ∈ �i,1

(
si,0

)
be the corresponding belief 

such that π ′ = π ◦ (
s′)−1

i,1 . It suffices to prove

Eπ

[
Wi,0

(
C0 |s0

)(
σ ∗)] ≥Eπ ′

[
Wi,0

(
C0 |s0

)(
σ ∗)] .

But since π and π ′ have the same marginal distribution over s−i,0, this holds if and only if

Eπ

[
Ui,1

(
C0

∣∣∣s0, s
1
i

)(
σ ∗)] ≥ Eπ ′

[
Ui,1

(
C0

∣∣∣s0, s
1
i

)(
σ ∗)]

= Eπ

[
Ui,1

(
C0

∣∣s0,
(
si,0, s

′ (si,1))) (
σ ∗)] .

The second line holds because π ′ is the pushforward belief of π under the mapping 
(
s−i,0, si,1

)
�→ (

s−i,0, s
′ (si,1)). It then suffices to prove

Ui,1

(
C0

∣∣∣s0, s
1
i

)(
σ ∗) ≥ Ui,1

(
C0

∣∣s0,
(
si,0, s

′ (si,1))) (
σ ∗) ∀si,1 ∈ S.

Using the recursive definition of Ui,0, this inequality can be stated

inf
�i,2

(
s0,s

1
i

)Eπ

[
Wi,1

(
C0

∣∣∣s0, s
1, si,2

)(
σ ∗)] (14)

≥ inf
�i,2

(
s0,

(
si,0,s

′(si,1)))Eπ

[
Wi,1

(
C0

∣∣s0,
(
s−i,1,

(
si,0, s

′ (si,1)) , si,2
)) (

σ ∗)] .

By definition, the t ≥ 1 policy functions 
{
c0
t , z

0
t , k

0
t+1

}T

t=1
in C0 depend only on the t = 0 re-

ported shock vector ŝ0 and the shock vector s′ (ŝ1
)

corresponding to each t = 1 reported shock 
vector ŝ1. Moreover, Assumption 2 implies that π2 ∈ �i,2

(
s0,

(
si,0, s

′ (si,1))) if and only if 

π2
(
si,2 = s

) = 1 and there exists π̃2 ∈ �i,2
(
s0, s

1
i

)
such that π2|s−i,1

= π̃2|s−i,1
◦ (

s′)−1. Since 
s′ is idempotent, π2 and π̃2 have the same implied distribution of the −i agents’ shifted shock 
vector s′ (s−i,1

)
, and hence the same distribution of t ≥ 1 consumption and effective labor allo-

cated to agent i. However, under the distribution π̃2, it is possible that agent i could realize a skill 
θi,t 
= θ at some t ≥ 2. With this realization, the agent’s period-t flow utility would be strictly 
higher than if he realized the skill θ . Given the recursive definition of Wi,1, this implies that (14)
holds, and thus that (13) holds.

It is clear that C0 satisfies non-negativity and feasibility, and we now demonstrate that C0 is 
incentive-compatible. To see this, note that (13) and the incentive-compatibility of C respectively 
imply

Ui,0

(
C0

∣∣si,0 )(
σ ∗) ≥ Ui,0

(
C

∣∣si,0 ) (
σ ∗) ≥ max

σi∈�
Ui,0

(
C

∣∣si,0 ) (
σ ∗−i , σi

)
.

Since C is assumed weakly monotone at t = 0, we can lower bound the second term on the right 
by replacing σ ∗−i with σ ∗0−i :

max
σi∈�

Ui,0
(
C

∣∣si,0 ) (
σ ∗−i , σi

) ≥ max
σi∈�

Ui,0
(
C

∣∣si,0 )(
σ ∗0−i , σi

)
.

We also have that σ 0
i ∈ � for any σi ∈ �, so we can lower bound the right side by replacing σi

with σ 0:
i
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max
σi∈�

Ui,0
(
C

∣∣si,0 )(
σ ∗0

−i , σi

)
≥ max

σi∈�
Ui,0

(
C

∣∣si,0 )(
σ ∗0

−i , σ
0
i

)
.

But C and C0 coincide for t ≥ 0 reported states of the form 
(
ŝ0, s

′ (ŝ1
)
, s, . . . , s

)
, so we can 

replace C with C0 to find the equality

max
σi∈�

Ui,0
(
C

∣∣si,0 )(
σ ∗0−i , σ

0
i

)
= max

σi∈�
Ui,0

(
C0

∣∣si,0 )(
σ ∗−i , σi

)
.

This sequence of relations implies that C0 is incentive-compatible. �
A.5. Optimal reform details

Proposition 3 implies that the government can solve its t = 0 problem (7) using a simplified 
allocation C0. As discussed in Section 3.3, since C0 is not fully contingent on agents’ reports 
at t = 1, the government may seek to implement a reform C1. In particular, given the simplified 
allocation C0 designed at t = 0, the truthfully-reported t = 0 state s0(= ŝ0), and the t = 1 type 
s1
g of the governing agent, the government seeks to solve the problem

max
C

inf
�g,2

(
ŝ0,s

1
g

)Eπ

[∑
i

ηiUi,1

(
C

∣∣∣s0, s
1
i

)(
σ ∗)] (15)

subject to non-negativity and∑
i

[
ci,t

(
ŝt

) + ki,t+1
(
ŝt

)] ≤
∑

i

f
(
ki,t

(
ŝt−1

)
, zi,t

(
ŝt

)) ∀t ≥ 1, ŝt ≥ ŝ0,

Ui,1

(
C

∣∣∣ŝ0, s
1
i

)(
σ ∗) ≥ Ui,1

(
C

∣∣∣ŝ0, s
1
i

)(
σ ∗−i , σi

) ∀i, s1
i , σi ∈ �,

Ui,0

(
C0

0 ,
(
Cτ

)T

τ=1

∣∣si,0 )(
σ ∗) ≥ Ui,0

(
C0

∣∣si,0 )(
σ ∗) ∀i, si,0,

Ui,0

(
C0

0 ,
(
Cτ

)T

τ=1

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
≤ Ui,0

(
C0

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
∀i, si,0, σi,0.

If the constraint set is non-empty, then the government chooses the allocation that solves problem 
(15). In this case, we can use arguments similar to those above to show that a simplified allocation 
is in the solution set.

In particular, let C∗1 ≡ C∗
(
ŝ0, s

1
g,C0

)
solve problem (15), and suppose that it is weakly 

monotone at t = 1. Define the simplified allocation C1 = {
c1
t , z

1
t , k

1
t

}T

t=1 analogously to how C0

was defined from C∗: Let{
c1

1, z
1
1, k

1
2

}
≡

{
c∗1

1 , z∗1
1 , k∗1

2

}
,

so that C1 and C∗1 coincide at t = 1. For t ≥ 2, define

c1
t

(
ŝt

) ≡ c∗1
t

(
ŝ1, s′ (ŝ2

)
, s, . . . , s

)
,

z1
t

(
ŝt

) ≡ z∗1
t

(
ŝ1, s′ (ŝ2

)
, s, . . . , s

)
,

k1
t+1

(
ŝt

) ≡ k∗1
t+1

(
ŝ1, s′ (ŝ2

)
, s, . . . , s

)
.
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The simplified allocation C1 clearly satisfies non-negativity and feasibility, and since we assume 
that C∗1 is weakly monotone at t = 1, the same argument as for C0 implies that C1 is incentive-
compatible at t = 1. To see that C1 satisfies the promise-keeping constraint (the third constraint 
in problem (15)), note first that the t = 1 analogue of (13) implies that for all i, all ŝ0, and all s1

i ,

Ui,1

(
C∗1

∣∣∣ŝ0, s
1
i

)(
σ ∗) ≤ Ui,1

(
C1

∣∣∣ŝ0, s
1
i

)(
σ ∗). (16)

Using this inequality and the definition of the utility function Ui,0, we then find that C1 satisfies 
the promise-keeping constraint:

Ui,0

(
C0

0 ,
(
C1

τ

)T

τ=1

∣∣si,0 )(
σ ∗)

= inf
�i,1

(
si,0

)Eπ

[
u

(
c0

0 (s0) ,
z0

0 (s0)

θi,0
(
si,0

)
)

+ βUi,1

(
C1

∣∣∣s0, s
1
i

)(
σ ∗)] .

≥ inf
�i,1

(
si,0

)Eπ

[
u

(
c0

0 (s0) ,
z0

0 (s0)

θi,0
(
si,0

)
)

+ βUi,1

(
C∗1

∣∣∣s0, s
1
i

)(
σ ∗)]

= Ui,0

(
C0

0 ,
(
C∗1

τ

)T

τ=1

∣∣si,0 )(
σ ∗)

≥ Ui,0

(
C0

∣∣si,0 )(
σ ∗).

The final inequality holds because C∗1 satisfies the promise-keeping constraint by assumption.
Finally, we show that the simplified allocation C1 also satisfies the threat-keeping constraint 

(the fourth constraint in problem (15)). Given the allocation 
(
C0

0 ,
(
C1

t

)T

t=1

)
, the strategy profile (

σ ∗−i,0, σi,0,
(
σ ∗

τ

)T

τ=1

)
, and the t = 0 type si,0, consider the t = 0 utility of agent i:

Ui,0

(
C0

0 ,
(
C1

τ

)T

τ=1

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
(17)

= inf
�i,1

(
si,0

)Eπ

[
u

(
c0

0

(
s−i,0, σi,0

(
si,0

))
,
z0

0

(
s−i,0, σi,0

(
si,0

))
θi,0

(
si,0

)
)

+ βUi,1

(
C1

∣∣∣(s−i,0, σi,0
(
si,0

))
, s1

i

)(
σ ∗)] .

The argument for the incentive-compatibility of C∗1 implies that inequality (16) holds with 
equality, so we can replace C1 with C∗1 in the argument of Ui,1 to find that (17) is equal to

inf
�i,1

(
si,0

)Eπ

[
u

(
c0

0

(
s−i,0, σi,0

(
si,0

))
,
z0

0

(
s−i,0, σi,0

(
si,0

))
θi,0

(
si,0

)
)

(18)

+ βUi,1

(
C∗1

∣∣∣(s−i,0, σi,0
(
si,0

))
, s1

i

)(
σ ∗)] .

= Ui,0

(
C0

0 ,
(
C∗1

τ

)T

τ=1

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
.

But C∗1 satisfies the threat-keeping constraint by assumption, so

Ui,0

(
C0

0 ,
(
C∗1

τ

)T

τ=1

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
(19)

≤ Ui,0

(
C0

∣∣si,0 )(
σ ∗−i,0, σi,0,

(
σ ∗

τ

)T

τ=1

)
.
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Expressions (17)-(19) then imply that C1 also satisfies the threat-keeping constraint. We have 
shown that the simplified allocation C1 is in the constraint set of problem (15), so inequality (16)
implies that it is also a solution to problem (15).

A.6. Proof of Proposition 6

Given allocation Či , agent i’s t = 0 continuation utility is given by

Ui,0

(
Či |s0

)
= u

(
či,0 (s0) ,

ži,0 (s0)

θi,0

)

+ inf
�i,1(s0)

Eπ

[
βu

(
či,1 (s0, θ1) ,

ži,1 (s0, θ1)

θi,1

)
+

T∑
t=2

βtu

(
či,t (s0, θ1) ,

ži,t (s0, θ1)

θ

)]
.

For notational simplicity, define

v̌ (s0, θ1) ≡ βu

(
či,1 (s0, θ1) ,

ži,1 (s0, θ1)

θi,1

)
+

T∑
t=2

βtu

(
či,t (s0, θ1) ,

ži,t (s0, θ1)

θ

)
.

Define v̂ (s0, θ1) similarly. By Assumption 3, we know that for each π ∈ �i,1 (s0), there exists 
π̃ ∈ �i,1 (s0) such that π and π̃ have the same marginal distribution over θ−i,1 conditional on 
s0, but the distribution of θi,1 under π̃ places weight only on θ and θ̄ so as to satisfy Eπ̃

[
θi,1

] =
Eπ

[
θi,1

]
. Let �̃i,1 (s0) ⊂ �i,1 (s0) denote the subset of all distributions of the form π̃ . By set 

inclusion, the following inequalities are immediate:

inf
�i,1(s0)

Eπ

[
v̌ (s0, θ1)

] ≤ inf
�̃i,1(s0)

Eπ̃

[
v̌ (s0, θ1)

]
, (20)

inf
�i,1(s0)

Eπ

[
v̂ (s0, θ1)

] ≤ inf
�̃i,1(s0)

Eπ̃

[
v̂ (s0, θ1)

]
. (21)

To see that the opposite inequalities also hold, let p(s0) ∈ [0,1] be such that

p (s0) θ + (1 − p (s0)) θ̄ = Eπ

[
θi,1

]
.

By the definition of Či , v̌
(
s0, θ−i,1, ·

)
lies weakly above its secant line between θ and θ̄ , so by 

the independence of θ−i,1 and θi,1 under π and π̃ , we have

Eπ

[
v̌ (s0, θ1)

] = Eπ

[
Eπ

[
v̌ (s0, θ1)

∣∣ θ−i,1
]]

≥ Eπ

[
p (s0) v̌

(
s0, θ−i,1, θ

) + (1 − p (s0)) v̌
(
s0, θ−i,1, θ̄

)]
= Eπ̃

[
p (s0) v̌

(
s0, θ−i,1, θ

) + (1 − p (s0)) v̌
(
s0, θ−i,1, θ̄

)]
= Eπ̃

[
v̌ (s0, θ1)

]
.

A similar set of calculations applies to v̂ (s0, θ1). By taking infima on both sides, we find that 
equality must hold in (20) and (21).

Now since v̌
(
s0, θ−i,1, ·

)
and v̂

(
s0, θ−i,1, ·

)
coincide on the endpoints of �, the independence 

of θi,1 and θ−i,1 imply
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Eπ̃

[
v̌ (s0, θ1)

] = Eπ̃

[
p (s0) v̌

(
s0, θ−i,1, θ

) + (1 − p (s0)) v̌
(
s0, θ−i,1, θ̄

)]
= Eπ̃

[
p (s0) v̂

(
s0, θ−i,1, θ

) + (1 − p (s0)) v̂
(
s0, θ−i,1, θ̄

)]
= Eπ̃

[
v̂ (s0, θ1)

]
.

Taking infima over �̃i,1 (s0) on both sides, we find

inf
�̃i,1(s0)

Eπ̃

[
v̌ (s0, θ1)

] = inf
�̃i,1(s0)

Eπ̃

[
v̂ (s0, θ1)

]
. (22)

Since equality holds in (20) and (21), (22) then implies

inf
�i,1(s0)

Eπ

[
v̌ (s0, θ1)

] = inf
�i,1(s0)

Eπ

[
v̂ (s0, θ1)

]
.

Thus agent i is indifferent between Či and Ĉi . �
Appendix B. Infinite time horizon, continuum of agents

This section describes an extension of the model in Section 2 to the case in which the time 
horizon is infinite (T = ∞) and there is a continuum of agents. To avoid difficulties in using 
backward induction to define certain belief sets, the model formulation will be sequential. For 
simplicity, we also assume that each shock si,t can be identified with the corresponding skill θi,t .

Identify each agent with a real number in the interval I1 = [0,1], and equip I1 with the Borel 
sigma algebra B and Lebesgue measure λ. Let � ⊂ R++ be the set of skill shocks that are 
possible in each period, which we will suppose is compact and connected for simplicity. As 
before, let θ and θ̄ denote the minimum and maximum elements of �, respectively. Give �N0

the sigma algebra generated by finite rectangles, i.e., sets of the form

(a1, b1] × (a2, b2] × . . . × (an, bn] × � × � × . . .

with θ ≤ ak ≤ bk ≤ θ̄ , k = 1, . . . , n, and n ∈N .
Let (�,F ,μ) be a measure space, where ω ∈ � denotes a possible state of the economy and 

μ is the distribution of states. Give I1 × � the product sigma algebra B ⊗ F with the product 
measure ϕ ≡ λ ⊗ μ. Let θ∞ : I1 × � → �N0 be B ⊗ F -measurable. For any i ∈ I1, θ∞ (i,ω)

denotes agent i’s infinite sequence of skill shocks if the state is ω. For notational simplicity, we 
will write θ∞

i ≡ θ∞ (i, ·). Define θ t as the projection of θ∞ to �t+1, and let Ft ≡ σ
(
θ t

) ⊂ B⊗F
be the sigma algebra generated by θ t . Then (Ft )

∞
t=0 is a filtration on B ⊗F to which the shock 

history process 
(
θ t

)∞
t=0 is adapted.

Let C ≡ {
ci,t

(
θ t

)
, zi,t

(
θ t

)
, ki,t+1

(
θ t

)}∞
t=0,i∈I1

denote an allocation, and let f : R2+ → R+
be a constant returns-to-scale production function that is increasing in capital and effective labor. 
We say that C is feasible if for all t and all ω,∫

I1

ci,t

(
θ t

) + ki,t+1
(
θ t

)
dλ ≤

∫
I1

f
(
ki,t

(
θ t−1

)
, zi,t

(
θ t

))
dλ.

For each agent i ∈ I1, let Pi ⊂ � (I1 × �,B ⊗F) be a non-empty set of prior distributions 
on (I1 × �,B ⊗F) that represent agent i’s beliefs. We assume that each distribution pi ∈ Pi

is a product measure of the form λ ⊗ μi for some μi ∈ � (�,F). Unlike in the main text, for 
simplicity we will assume here that agents update their beliefs using Bayes’s rule prior-by-prior. 
Given an allocation C, and a realization θ t , agent i’s t continuation utility is given by
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Ui,t

(
C

∣∣θ t
) := inf

pi∈Pi

Epi

[ ∞∑
τ=t

βτ−t u

(
ci,τ

(
θτ

)
,
zi,τ (θτ )

θi,τ

)∣∣∣∣∣ θ t

]
,

where β ∈ (0,1). With social welfare weights η ∈ � (I1,B) and an initial state θ0, an efficient
allocation C∗ (θ0) is given by

C∗ (θ0) ∈ arg max
C

∫
I1

Ui,0 (C |θ0 ) dη,

subject to feasibility and non-negativity.
The analog of Assumption 1 in this setup is

Assumption 4. For any t ≥ 0, θ t , i, and pi ∈ Pi , there exists p′
i ∈ Pi such that

p′
i

( ·| θ t
)∣∣
Ft+1

= pi

( ·| θ t
)∣∣
Ft+1

,

but

p′
i

((
θ∞)−1

({
� ∈ �N0 : �τ = θ, τ ≥ t + 2

}))
= 1.

This assumption implies that in any period t and for any belief pi ∈ Pi , there exists another 
belief p′

i ∈ Pi such that pi and p′
i imply the same distribution of the t + 1 realization θ+1

conditional on θ t . However, under p′
i , almost surely almost all agents will realize the shock 

θ at τ ≥ t + 2.
To prove an analogue of Proposition 1, we must make an additional assumption. Since the 

policy functions in an allocation depend fully on the realization θ t , it is possible that changing 
the shock histories of agents in a set of λ-measure zero could alter an agent i’s allocation. This 
property is inconsistent with Assumption 4, which ensures only that a full measure of agents 
realize the shock θ at τ ≥ t + 2 under the distribution p′

i . We will thus assume that the policy 
functions do not distinguish between any two t realizations θ t and θ̃ t such that θ t

i 
= θ̃ t
i for i in a 

set of λ-measure zero.23

Given the assumptions above, periodically-reformed policies are optimal:

Proposition 8. In any period t , any feasible allocation C is weakly Pareto dominated by a feasi-
ble simplified allocation Ct , i.e.,

Ui,t

(
Ct

∣∣θ t
) ≥ Ui,t

(
C

∣∣θ t
) ∀i.

Proof. Define C0 to coincide with C at t = 0 and at t = 1. Then let

c0
t

(
θ t

) ≡ ct

(
θ1,

(
θτ

)t−2
τ=2

)
.

Here θτ : I1 ×� → � satisfies θτ (i,ω) = θ for all (i,ω) ∈ I1 ×�. Define zt and kt+1 similarly. 
Let P ′

i ⊆ Pi denote all distributions of the form p′
i ∈ Pi . Then for all i,

23 This assumption is without loss of generality when the social welfare measure η is absolutely continuous with respect 
to Lebesgue measure. Alternatively, a natural way to enforce this assumption is to constrain policy functions to depend 
only on an agent’s shock history θt

i
as well as the distribution of shock histories in the economy. To define the information 

structure appropriately, random measures should be used to model the agent’s beliefs about the distribution of shock 
histories that will be observed in subsequent periods.
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Ui,0

(
C

∣∣∣θ0
)

= inf
Pi

Epi

[ ∞∑
t=0

βtu

(
ci,t

(
θ t

)
,
zi,t

(
θ t

)
θi,t

)∣∣∣∣∣ θ0

]

≤ inf
P ′

i

Ep′
i

[ ∞∑
t=0

βtu

(
ci,t

(
θ t

)
,
zi,t

(
θ t

)
θi,t

)∣∣∣∣∣ θ0

]

= inf
P ′

i

Ep′
i

[ ∞∑
t=0

βtu

(
c0
i,t

(
θ t

)
,
z0
i,t

(
θ t

)
θi,t

)∣∣∣∣∣ θ0

]

≤ inf
Pi

Epi

[ ∞∑
t=0

βtu

(
c0
i,t

(
θ t

)
,
z0
i,t

(
θ t

)
θi,t

)∣∣∣∣∣ θ0

]

= Ui,0

(
C0

∣∣∣θ0
)

.

The third line holds because C0 and C∗ coincide when almost every agent realizes the shock 
θ at t ≥ 2. The last line holds because c0

t and z0
t only depend on θ1 for t ≥ 2, and agent i can 

potentially realize a shock θi,t 
= θ at some t ≥ 2 under a distribution pi ∈ Pi \ P ′
i . Hence all 

agents weakly prefer C0 to C∗, and the feasibility of C0 follows from that of C∗. By iterating 
this process in each period, we have the result. �

With Proposition 8, we find that even when the time horizon is infinite and there is a con-
tinuum of measureless agents, the efficient allocation can be implemented by a sequence of 
simplified allocations 

{
Ct

}∞
t=0 that are reformed after each period. As in Section 2.2, each al-

location Ct displays limited state dependence at τ ≥ t + 2, and an argument analogous to that 
in Section 2.3 implies that they are history independent whenever the government’s promise-
keeping constraints are slack.

References

Acemoglu, Daron, Simsek, Alp, 2012. Moral Hazard and Efficiency in General Equilibrium with Anonymous Trading. 
Working paper.

Aghion, Philippe, Akcigit, Ufuk, Lequien, Matthieu, Stantcheva, Stefanie, 2017. Tax Simplicity and Heterogeneous 
Learning. NBER Working Paper, No. 24049.

Barlevy, Gadi, 2011. Robustness and macreoconomic policy. Annu. Rev. Econ. 3, 1–14.
Benigno, Pierpaolo, Paciello, Luigi, 2014. Monetary policy, doubts and asset prices. J. Monet. Econ. 64, 85–98.
Bergemann, Dirk, Morris, Stephen, et al., 2013. An introduction to robust mechanism design. Foundations and Trends® 

in Microeconomics 8 (3), 169–230.
Bhandari, Anmol, 2015. Doubts, Asymmetries, and Insurance. Working paper.
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