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Abstract

Transformative technologies like generative AI promise to accelerate productivity growth

across many sectors, but they also present new risks from potential misuse. We develop a

multi-sector technology adoption model to study the optimal regulation of transformative

technologies when society can learn about these risks over time. Socially optimal adop-

tion is gradual and typically convex. If social damages are large and proportional to the

new technology’s productivity, a higher growth rate paradoxically leads to slower optimal

adoption. Equilibrium adoption is inefficient when firms do not internalize all social dam-

ages, and sector-independent regulation is helpful but generally not sufficient to restore

optimality.

JEL Classification: H21, O33, O41

Keywords: AI, disasters, economic growth, regulation, technology adoption

Recent breakneck advances in (generative) artificial intelligence have simultaneously raised

hopes of productivity gains in many sectors and fears that this technology will be used for

nefarious purposes, even posing an existential risk comparable to nuclear war.1 Some experts

have called to slow down or pause the development and adoption of AI technologies,2 partly

because a slower rollout might provide time to identify danger areas and craft appropriate

regulations. However, there is little economic analysis of these issues, and it is unclear whether

slowing the development and adoption of a promising, transformative technology ever makes

sense.
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In this paper, we develop a framework to provide a first set of insights on these questions.

We consider a multi-sector economy that initially uses an old technology but can switch to a

new, transformative technology. This technology is transformative both because it enables a

higher growth rate of output, and because it is general-purpose and can be adopted across all

sectors of the economy. It also poses new risks. We model these by assuming that there is

a positive probability of a disaster, meaning that the technology will turn out to have many

harmful uses. If a disaster is realized, some of the sectors that had started using the new

technology may not be able to switch away from it, despite the social damages. Whether there

will be a disaster is initially unknown, and society can learn about it over time. Critically, we

assume that the greater are the new technology’s capabilities, the more damaging it will be

when used for harmful purposes.3

In this environment, we study (socially) optimal and equilibrium adoption decisions. We

first show that it is optimal to adopt the new technology gradually, because this enables greater

learning. If all sectors immediately adopted and the disaster transpired, many of them would

not be able to switch back and avoid the social damages. Gradual adoption allows society to

gain from the new technology while updating its beliefs about whether it will have socially

damaging uses. As more time passes without disaster, the belief that there will be a disaster

declines (“no news is good news”). As society becomes more optimistic, it is optimal to adopt

the new technology across a larger number of sectors. Under weak conditions this adoption

path is slow and convex, accelerating only after society is fairly certain that a disaster will not

occur. A simple quantitative example indicates that, for reasonable parameters for the new

technology’s growth advantage and disaster risk, optimal adoption can be very slow.

Perhaps surprisingly, we demonstrate that adoption should be slower when the new tech-

nology has a higher growth rate and damages from a disaster are large. This is for two reasons.

First, since damages after a potential disaster increase with the new technology’s capabilities, a

higher growth rate means that damages also grow more quickly. Second, with a higher growth

rate the effective discount rate for future output declines, so that short delays in adoption are

not very consequential for discounted utility.

Compared to optimal adoption, equilibrium adoption is inefficiently fast if private firms in-

ternalize only part of the social damages from a disaster. Even the order in which sectors adopt

the new technology can differ between the equilibrium and the optimum—sectors that have

high social damages are not necessarily those that have high private damages for adopters.4

3These assumptions can be motivated with generative AI applications. For irreversibility, once large language
models like ChatGPT are deployed in secondary education, it may be impossible to roll back their use, even after
it becomes clear that they harm student learning. For the damages rising with productivity, many experts fear
that these technologies either pose existential risks or will be misused, both of which would be more damaging
when they have greater capabilities (e.g., Shevlane, et al., 2023).

4For example, if AI is used to create pervasive disinformation on social media, this may be disastrous for
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Finally, we discuss how regulatory schemes can help to close the gap between optimal and

equilibrium adoption. Pigovian taxes, use taxes, or adoption taxes that are sector-specific can

fully implement optimal adoption. When sector-specific policies are not feasible, it is generally

not possible to implement optimal technology choices, but regulation can still increase welfare

by prohibiting use of the new technology in the sectors with the largest potential for harm until

the risk of a disaster is sufficiently low.

This paper is a first attempt to study the consequences and regulation of transformative

technologies that can be used for good or bad. Our conclusions naturally depend on our mod-

eling assumptions and should be interpreted with caution.

There are three literatures on which we build. The first is a growing literature on economic

disasters (e.g., Rietz, 1988; Barro, 2006, 2009; Weitzman, 2009, 2011; Martin and Pindyck,

2015, 2021), which explores how the risk of rare economic disasters affects asset prices and

cost-benefit analysis, but does not focus on questions of technology adoption.

The second is a literature on technology adoption (e.g., Katz and Shapiro, 1986; Parente

and Prescott, 1994; Foster and Rosenzweig, 1995, 2010; Acemoglu, Aghion, and Zilibotti,

2006; Acemoglu, Antràs, and Helpman, 2007; Comin and Mestieri, 2014). Early work touching

on AI includes Galasso and Luo (2018) and Agrawal, Gans, and Goldfarb (2019), but these

papers do not focus on issues of learning about social damages from new technologies.

Third, there is a nascent literature focusing on damages from certain technologies (e.g.,

Bovenberg and Smulders, 1995; Acemoglu, Aghion, Bursztyn, and Hemous, 2012). Most

closely related to our paper are a few works that discuss the dilemma between growth and ex-

istential risk from new technologies, including AI. Jones (2023) develops a one-sector growth

model in which AI can be used to raise the aggregate growth rate, but with small probability

causes human extinction. Whether it is optimal to use AI depends crucially on the coefficient

of relative risk aversion and whether consumption utility is bounded. Aschenbrenner (2020)

incorporates existential risk into Jones’s (2016) model of growth and mortality, and argues

that existential risk rises with consumption unless new mitigation technologies are developed.

His model thus exhibits an “existential risk Kuznets curve” in which existential risk optimally

increases until sufficient R&D resources are shifted toward mitigation. These two papers share

our focus on the costs and benefits of transformative technologies, but they do not address the

speed of adoption across sectors and do not feature learning about risks over time.

The rest of the paper is organized as follows. Section I presents our benchmark model. Sec-

tions II and III characterize optimal and equilibrium technology choices. Section IV discusses

the conditions under which optimal technology choices can be restored through regulatory

taxes, and Section V concludes. Omitted proofs and extensions are in the online Appendix.

democracy but profitable for social media platforms.
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I Setup

We consider a continuous-time economy that linearly produces a final good from a continuum

of sectors i ∈ [0, 1]:

Y =

∫ 1

0

Yidi.

A representative household has risk-neutral preferences defined over this final good and dis-

counts the future at rate ρ > 0.

Each sector can use an old technology O or a new, transformative technology N . We write

Q j (t) > 0 for the quality of technology j ∈ {O, N} at time t, x i (t) = 1 if sector i switches its

production process to technology N , and x i (t) = 0 otherwise. Sectoral output is

Yi = (1− x i)QO + x iαiQN ,

where αi designates the comparative advantage of the new technology, which may vary if

the new technology is better-suited for some sectors than others. Given technology choices

x = (x i)i∈[0,1] and qualities Q = (QO,QN ), final output is

Y (x ,Q) =

∫ 1

0

(1− x i)QO + x iαiQN di.

The new technology is transformative, both because it is general-purpose and can be applied

across all sectors, and because it enables not just the production of more output, but a higher

growth rate:

gN > gO ≥ 0.

As a result of its restructuring impact on the economy, it also poses new risks. We model these

by assuming that there may be a disaster whereby the new technology generates negative

effects. If a disaster happens, then there will be damages of δiQN > 0 (in units of the final

good) in the sectors that are using the technology. We assume that use of the new technology

may be irreversible, so that with probability ηi ∈ (0, 1) sector i cannot switch to technology O

if it is using technology N when the disaster strikes. The realization of this reversibility event

is independent across sectors. We assume that damages are proportional to QN because the

negative effects correspond to misusing the better capabilities of the new technology.

In what follows, we reorder sectors so that δi is increasing and assume that i denotes the

quantiles of the δ distribution, so that we can take this distribution to be uniform over some
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interval [δ,δ]. Overall damages then become

D (x ,Q) =

�

∫ 1

0

δi x idi

�

QN .

The economy will experience a disaster with probability µ̄ ∈ (0, 1), and if there is a disaster,

its arrival time T is distributed exponentially with rate λ. We let µ (t) denote the (the planner’s

or society’s) posterior belief at t that there will be a disaster, assuming one has not yet arrived.

We impose rational expectations, so that µ (0) = µ̄ and the posterior belief evolves according

to Bayes’s rule:

(1) µ̇ (t) = −λµ (t) (1−µ (t)) .

A few comments are in order. First, we model damages in each sector i by the reduced-

form function δiQN to capture a broad range of potential harms. In the context of AI, these

include the spread of disinformation that harms democracy; mass unemployment; and the

disruption of production in many sectors from AI-aided cyberattacks.5 Second, as suggested

above, the assumption that damages are proportional to QN is related to the transformative

nature of this new technology. For example, damages from disinformation from AI will be

higher when it can generate better language. Third, we assume that the arrival rate of the

disaster—and hence learning about the negative effects of the new technology—is independent

of how many sectors switch to the new technology. This is for simplicity, but is not unreasonable

since many of the potential misuses of a new technology can be gradually recognized without

widespread adoption.6 Fourth, it can be verified that our results remain identical if, instead

of a single economy-wide disaster, there are sector-specific disasters and beliefs about each

sector’s disaster follow (1).

II Socially Optimal Technology Choice

In this section, we set up, solve, and provide comparative statics for the (social) planner’s

problem.

5Our functional form assumptions also impose that the rate of substitution between gross consumption and
damages in utility is constant and equal to one. Jones (2023) points out that this may not hold in the case of
existential risk and explores the implications for optimal use of a life-threatening new technology.

6Alternative assumptions are discussed in Section V.
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II.A Social Planner’s Problem

Given risk neutrality, the planner’s objective is

(2) V (0) = Eµ(0)

�∫ ∞

0

exp (−ρt) [Y (t)− D (t)] d t

�

,

where Y (t) and D(t) denote output and damages at time t and the expectation Eµ(0) is with

respect to the prior belief µ (0) over the disaster’s arrival time T . To ensure that the objective

is well-defined, we assume

(3) ρ > gN ,

which rules out the case in which the new technology grows so quickly that discounted utility

becomes infinite.

It is more convenient to work with the recursive formulation of (2), which has the following

state variables: the posterior belief of disaster, µ; the time-varying qualities of the old and

new technologies, Q; and, after the disaster, the set of sectors that were already using the

new technology and for which this use is irreversible. We track these sectors using the vector

x̄ = ( x̄ i)i∈[0,1], where x̄ i = 1 if sector i uses technology N irreversibly and x̄ i = 0 otherwise.

Let V (µ,Q) denote pre-disaster social welfare, and let W ( x̄ ,Q) denote post-disaster welfare.

Then the Hamilton-Jacobi-Bellman (HJB) equations for the planner are

ρV (µ,Q) = max
x i∈{0,1}

{Y (x ,Q) +µλ (E [W ( x̄ ,Q)| x]− V (µ,Q))}+ V̇ (µ,Q) ,(4)

ρW ( x̄ ,Q) = max
x i∈{ x̄ i ,1}

{Y (x ,Q)− D (x ,Q)}+ Ẇ ( x̄ ,Q) .(5)

Equation (5) imposes that x i cannot be less than x̄ i, because x̄ i = 1 implies that sector i’s use of

the new technology is irreversible. V then depends on the conditional expectation of welfare

after a disaster given the current technology choices x , denoted by E [W ( x̄ ,Q)| x].7 In (4) we

also use the fact that the arrival rate of the disaster, given the posterior µ, is µλ.

To characterize the planner’s technology choices, suppose first that the disaster has oc-

curred. The planner’s problem in (5) is linear, so the solution is

x i =







1 if x̄ i = 1 or (αi −δi)QN >QO,

0 else.

7To determine this conditional expectation, we use P ( x̄ i = 1| x i = 1) = ηi and P ( x̄ i = 1| x i = 0) = 0.
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This expression assumes, without loss of generality, that the planner sticks with the old tech-

nology if indifferent. It also imposes the constraint that x i = 1 when x̄ i = 1. Even when

unconstrained, it may be optimal to set x i = 1 if the output produced by technology N exceeds

its damages plus the output that can be produced by technology O. We first assume that dam-

ages are sufficiently large that, whenever possible, the planner chooses technology O after a

disaster:

(6) αi ≤ δi.

This enables us to focus on the most interesting case where damages exceed the benefits of the

new technology. We return to the general case in Section II.C.

Integrating the HJB equation (5) and taking expectations with respect to x̄ , we have

E [W ( x̄ ,Q)| x] =
∫ 1

0

�

�

1− x iηi

� 1
ρ − gO

QO + x iηi
αi −δi

ρ − gN
QN

�

di.

Before the disaster, it is optimal from (4) to use technology N in sector i iff

(7) αiQN −QO > µληi

�

1
ρ − gO

QO −
αi −δi

ρ − gN
QN

�

.

Intuitively, the left-hand side is the flow gain from using technology N in sector i, while the

right-hand side is the expected loss due to the disaster, including both the discounted value of

lost output and the irreversible damages. These losses are multiplied by the posterior arrival

rate of the disaster µλ and the probability of irreversibility ηi. Since µ is decreasing and QN/QO

is increasing, for any initial state (µ (0) ,Q (0)) there exists a time t i <∞ such that technology

O is used in sector before t i and technology N is used thereafter.

II.B Socially Optimal Technology Adoption

To determine how (socially) optimal use of technology N changes over time, denote the fraction

of sectors that use technology N , or total adoption, by

X (µ, q) =

∫ 1

0

x i (µ, q) di.

Here q = log (QN/QO) is the quality gap between the technologies, and x i (µ, q) = 1 iff it is

optimal to use technology N in sector i in state (µ, q). For simplicity, we assume that αi and ηi

are constant across sectors and equal to α and η (the general case is studied in Appendix B).
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This implies that there exists a damage threshold L (µ, q) such that it is optimal to adopt the new

technology in sector i iff δi < L (µ, q). Letting F denote the cumulative distribution function

of the uniform distribution over [δ, δ̄], total adoption is then just the fraction of sectors below

the damage threshold:

X (µ, q) = F (L (µ, q)) .

The following proposition is immediate from (7), and we omit its proof:

Proposition 1. Suppose (6) holds and αi and ηi are constant across sectors. It is socially optimal

to use technology N in sector i iff δi < L (µ, q), where

(8)
L (µ, q)−α
ρ − gN

=
α− exp (−q)
µλη

−
exp (−q)
ρ − gO

.

L (µ, q) (and thus X (µ, q)) is increasing in α and q; decreasing in gO, λ, and µ; and decreasing

in gN , provided that L (µ, q)> α.

Given (6), the condition L (µ, q) > α is satisfied as soon as there is any adoption. Proposi-

tion 1 then implies that when the new technology enables faster growth, its adoption should be

slower. This is because of a precautionary motive—even though the planner is risk-neutral, she

would like to avoid irreversible damages from the new technology. The faster the new tech-

nology grows, the greater are the potential net output losses, strengthening this precautionary

motive.

The comparative statics in Proposition 1 are partial because they hold the state (µ, q) fixed.

Full comparative statics must account for how parameter changes affect the evolution of the

state (µ(t), q(t)). The belief µ(t) does not depend on the growth rates gO and gN , but the

quality gap q(t) = q (0) + (gN − gO) t does. The damage threshold L (µ, q) is increasing in the

quality gap, so any change in growth rates affects adoption at each t > 0 through both the

direct effects described in Proposition 1 and the indirect effects through changes in the quality

gap q (t). The next proposition characterizes these total effects.

Proposition 2. Suppose (6) holds and αi and ηi are constant across sectors.

1. X (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̄ <∞ such that X (µ (t) , q (t)) is decreasing in gN if t > t̄ .

The time t̄ is decreasing in gN .

3. Adoption falls to zero as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t)) = 0.
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The first part of Proposition 2 establishes that the comparative static for gO from Proposi-

tion 1 generalizes in the presence of the indirect effects through q(t)—the quality gap q(t) is

declining in gO, reinforcing the direct effect and decreasing adoption. The second part shows

that the new technology’s growth rate has more nuanced implications: Adoption is not always

decreasing in gN , but it is after some critical time t̄, and this time itself is a decreasing function

of gN . This holds because the precautionary motive highlighted above must compete with the

fact that the quality gap q(t) is increasing in gN , but this indirect effect can dominate only at

short time horizons.

The third part of proposition establishes that as gN increases towards the discount rate,

adoption almost stops. This might appear paradoxical initially, but is also intuitive. When

gN is approximately equal to ρ, the benefits from the new technology are very high, leading

to nearly infinite discounted utility provided no disaster arrives. Delay in adoption thus has

little effect on these benefits. However, a disaster will have huge negative consequences, and

avoiding it now takes precedence.

The next proposition further characterizes the shape of the adoption curve. Since F is

uniform, Ẋ (µ, q) = f L̇ (µ, q), where f is the constant density of F . Hence, the curvature of

technology adoption is
Ẍ (µ, q)
Ẋ (µ, q)

=
L̈ (µ, q)
L̇ (µ, q)

.

We therefore have:

Proposition 3. Suppose (6) holds.

1. L̇ (µ, q) > 0 is decreasing in gO, and it is decreasing in gN iff the quality gap is sufficiently

large, i.e.,

αexp (q)− 1>
(ρ − gN )− (gN − gO)

1−µ

�

1
λ
+
µη

ρ − gO

�

.

2. There exists a positive constant G (µ, q) such that if αexp (q)> 1, L̈ (µ, q)> 0 is positive iff

gN − gO > G (µ, q). G (µ, q) is independent of gN and increases to infinity over time.

The intuition for the first part is the same as for Proposition 2: The damage threshold in-

creases as the posterior belief µ falls and the quality gap q grows. Faster growth for technology

O slows the rate of increase of the quality gap and raises the opportunity cost of using tech-

nology N after the disaster. Consequently, the damage threshold grows less quickly in each

state. Faster growth for technology N raises both the rate of increase in the quality gap and

the net output losses from technology N after the disaster. The latter effect dominates when
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Figure 1: Adoption curves X (t) ≡ X (µ (t) , q (t)) for different values of gN . The remaining
parameter values are ρ = 0.04, λ = 0.05, η = 0.5, α = 1, gO = 0.02, δ = 1, and δ̄ = 5. The
initial state is µ (0) = 0.2 and q (0) = 0.

the quality gap is sufficiently large because additional improvements in technology N relative

to O have only a negligible impact on the planner’s technology choice.8

The second part of the proposition proves that when the new technology’s growth advan-

tage is sufficiently large, its adoption will have a convex segment where adoption accelerates.

This result holds even though the learning rate |µ̇| falls at a greater than exponential rate when

µ < 1
2 (in particular, d

d t |µ̇| = −λ |µ̇| (1 − 2µ)). This is because expected damages from tech-

nology N in sector i are proportional to the posterior µ, and as µ declines, larger increases in

the damage threshold L (µ, q) are needed to balance the expected damages and benefits in the

“marginal” sector.9

To illustrate these results, we depict the time path of adoption in a couple of parameterized

cases in Figure 1. We set gO = 2% in line with trend GDP growth in developed economies and

ρ = 0.04 to produce a risk-free interest rate of 4%. We choose two values for gN based on Chui,

Roberts, Yee, Hazan, et al. (2023), who forecast an increase in the growth rate of 0.6-3.6%

in the United States between 2023 and 2040 from AI and other automation technologies. We

take the lower end of this range, gN − gO = 0.6%, and a higher but still conservative estimate

8The latter effect also dominates regardless of the quality gap whenever L (µ, q)> 0 and gN − gO ≥ ρ − gN .
9In Appendix B, we verify this intuition by showing that learning dynamics favor concave adoption when sectors

are heterogeneous according to αi instead of δi .
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from the middle of the range: gN − gO = 1.8% (while still satisfying (3)). We take the two

technologies to have the same quality in year t = 0, thus q(0) = 0. We suppose that damages

range from one to five times gross sectoral output (δ = 1, δ̄ = 5), and we setη= 0.5 so that half

of all sectors using the new technology cannot switch back after a disaster. We set the expected

arrival time of a disaster (if one exists) to be 20 years, which gives λ = 0.05. Finally, a recent

survey of AI experts reports a median estimate of existential risk of about 10%,10 and since we

are interested in non-existential misuses of AI as well, we choose the initial disaster probability

to be twice as large, µ(0) = 20%. Figure 1 shows that optimal adoption is slow, taking about

40 years until full adoption when gN = 2.6% and almost 60 years when gN = 3.8%.

II.C Optimal Adoption with Small Damages

We have so far imposed (6), ensuring that the post-disaster damages from the new technology

are large and exceed its gross output within each sector. This is a natural benchmark, since our

analysis is motivated by significant potential harms from AI. We now relax this assumption and

allow a sector’s damages to be small relative to its output under the new technology (δi < α).

In Appendix C, we show that socially optimal adoption is again characterized by a damage

threshold L (µ, q), and we prove the following analogue to Proposition 2 for small damages.

Proposition 4. Suppose αi and ηi are constant across sectors. For all t with L (µ (t) , q (t))< α:

1. X (µ (t) , q (t)) is decreasing in gO.

2. X (µ (t) , q (t)) is increasing in gN .

3. If q(0) is sufficiently low and X (µ (t) , q (t)) < F (α), adoption is bounded below F (α) as

gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t))< F (α).

Adoption among sectors with small damages is still decreasing in gO, but in contrast to

the case with large damages, it is increasing in gN . Gradual adoption remains optimal even

when gN increases toward the discount rate ρ. With small damages, using technology N is

always optimal in the long run. Nevertheless, gradual adoption is optimal to learn about the

probability of a disaster (before one occurs) and to delay the adoption of technology N in

case of a disaster until the quality gap becomes sufficiently large. This strategy thus avoids

temporary costs of irreversibility. Further analysis of this case is presented in Appendix C.

Finally, we note that if damages are uncertain, any chance of large damages leads to longer

optimal delay, even if expected damages are small, in order to avoid the possibility that dam-

ages turn out to be large and adoption is irreversible.

10https://aiimpacts.org/2022-expert-survey-on-progress-in-ai
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In summary, the optimal adoption of a new, transformative technology should be gradual,

particularly when its superior capabilities also make its potential damages greater and there is

learning about the likelihood of misuse (a “disaster”).

III Equilibrium Technology Choice

We now characterize equilibrium technology adoption when private firms do not fully inter-

nalize social damages.

III.A The Firm’s Problem

Suppose now that in each sector, the choice of technology is made by a private (representa-

tive) firm that seeks to maximize expected discounted profits. To simplify, we assume that the

firm in sector i appropriates all output of its intermediate as profits, but only internalizes pri-

vate damages γi ≤ δi. This textbook externality leads to excessively fast adoption of the new

technology before the disaster, and our main results below describe how the equilibrium and

socially optimal adoption curves differ.

Firm i’s profit maximization problem can be formulated recursively in the same way as the

planner’s problem in the previous section. The state variables before the disaster are again µ

and Q, and after the disaster they are x̄ i and Q. Let Πi (µ,Q) denote the firm’s pre-disaster

value, Φi ( x̄ i,Q) its post-disaster value, and Yi (x i,Q) its (gross) output. The HJB equations for

the firm are

ρΠi (µ,Q) = max
x i∈{0,1}

{Yi (x i,Q) +µλ (E [Φi ( x̄ i,Q)| x i]−Πi (µ,Q))}+ Π̇i (µ,Q) ,(9)

ρΦi ( x̄ i,Q) = max
x i∈{ x̄ i ,1}

�

Yi (x i,Q)− x iγiQN

	

+ Φ̇i ( x̄ i,Q) .(10)

These value functions differ from the planner’s (4) and (5) because the firm internalizes only

a fraction γi/δi of the flow damages from technology N .

We now impose a stronger version of (6): private damages are sufficiently large that firm

i will always choose technology O after the disaster if possible:11

(11) αi ≤ γi.

11Without this assumption, an additional inefficiency would arise in equilibrium as firms would use the new
technology in some (reversible) sectors even after a disaster.
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Similar to the planner’s solution, it is privately optimal for firm i to use technology N iff

αiQN −QO > µληi

�

1
ρ − gO

QO −
αi − γi

ρ − gN
QN

�

.

The only difference between this condition and the planner’s optimality condition (7) is that

private damages γi appear instead of social damages δi on the right-hand side. Firm i inter-

nalizes fewer damages from technology N and thus begins using it earlier.

III.B Equilibrium Technology Adoption

We denote total equilibrium adoption by

X̃ (µ, q) =

∫ 1

0

x̃ i (µ, q) di,

where x̃ i (µ, q) = 1 iff firm i uses technology N in state (µ, q). Again assuming that αi and ηi

are constant across sectors, it is immediate that firm i will adopt the new technology iff private

damages are lower than the damage threshold, γi < L (µ, q). Equilibrium adoption is then

X̃ (µ, q) = Fγ (L (µ, q)) ,

where Fγ is the cumulative density function of γi.

This characterization implies that all comparative statics results from Section II.B apply to

equilibrium adoption. The results in Propositions 1 and 3 concern only the damage threshold

L (µ, q) and hold exactly as stated, while Proposition 2 applies after replacing X (µ, q) with

X̃ (µ, q):

Proposition 5. Suppose (11) holds and αi and ηi are constant across sectors.

1. X̃ (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̃ <∞ such that X̃ (µ (t) , q (t)) is decreasing in gN if t > t̃ .

The time t̃ is decreasing in gN .

3. Adoption falls to zero as gN increases to ρ: limgN↑ρ X̃ (µ (t) , q (t)) = 0.

In the remainder of this section, we characterize how the optimal and equilibrium adoption

curves differ. We first observe that similar adoption curves do not imply that the equilibrium is

optimal, because the order in which sectors adopt the new technology matters. For example,
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private and social damages may be negatively affiliated, meaning that high social damage sec-

tors have low private damages. In this case, the order in which the new technology spreads in

equilibrium is exactly the opposite of the optimal order.

Even when the equilibrium and optimal orders of adoption coincide, the equilibrium can

be inefficient. To see this, suppose that social and private damages are positively affiliated, so

that there exists a non-negative and (strictly) increasing function κ with γi = κ (δi) ≤ δi. We

can then write equilibrium adoption as

X̃ (µ, q) = F
�

κ−1 (L (µ, q))
�

.

This equation implies that the equilibrium adoption curve X̃ (µ (t) , q (t)) is a distorted version

of the optimal adoption curve, with an equilibrium damage threshold L̃ (µ, q) = κ−1 (L (µ, q)).
In this case, knowing how the equilibrium and social damage thresholds differ is sufficient to

fully characterize equilibrium inefficiencies. The next proposition determines how the level,

rate of change, and curvature of the equilibrium damage threshold L̃ (µ, q) differ from its social

counterpart L (µ, q).

Proposition 6. Suppose (11) holds and αi and ηi are constant across sectors.

1. The equilibrium damage threshold is always greater than the social damage threshold:

L̃ (µ, q)≥ L (µ, q).

2. The equilibrium damage threshold increases more quickly than the social damage threshold

when κ′
�

L̃ (µ, q)
�

< 1:

˙̃L (µ, q) =
L̇ (µ, q)

κ′
�

L̃ (µ, q)
� .

3. The equilibrium damage threshold is more convex than the social damage threshold when κ

is locally concave:
¨̃L (µ, q)
˙̃L (µ, q)

=
L̈ (µ, q)
L̇ (µ, q)

−
κ′′
�

L̃ (µ, q)
�

κ′
�

L̃ (µ, q)
� L̇ (µ, q) .

These results follow from the definition of the equilibrium damage threshold L̃ (µ, q). We

illustrate them in Figure 2 by depicting socially optimal and equilibrium adoption curves for

the benchmark parameterizations in Figure 1 and a concave affiliation function κ. The equi-

librium damage threshold is always greater than its social counterpart and increases more

quickly (for the marginal sectors where κ′
�

L̃ (µ, q)
�

< 1). Consequently, equilibrium adoption

is inefficiently rapid and accelerates when there are high social damages.
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Figure 2: Socially optimal and equilibrium adoption curves, X (t) and X̃ (t) ≡ X̃ (µ (t) , q (t)).
The calibration is the same as in Figure 1. The affiliation function is κ (δ) = δ1/2.

In summary, equilibrium adoption of transformative technologies is determined by the same

forces that shape optimal adoption. However, because firms are motivated by higher produc-

tivity and discouraged only by private damages, equilibrium adoption is generally suboptimal:

Firms do not fully internalize social damages from potential disasters, so equilibrium adop-

tion is typically too high and rises too quickly, and the order in which sectors adopt the new

technology may differ from the optimal one.

IV Regulating Technology Choice

Since equilibrium adoption is potentially inefficient, a natural question is whether government

regulation can close the gap between equilibrium and optimal adoption decisions. Throughout

this section, we continue to assume that (11) holds, and we simplify the analysis by focusing

on ex ante regulations.12

Socially optimal and equilibrium technology choices differ because the planner and private

firms internalize different damages after the disaster and hence different expected damages

12We ignore ex post (“Pigovian”) taxes both because their analysis is essentially identical to our characterization
of use taxes, and also because they may not be credible as they do not affect technology choice after the disaster—
the private sector already stops using the new technology whenever possible.
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before the disaster. A straightforward way to correct firms’ incentives is through a use tax that

raises firms’ costs of using the new technology before the disaster.13 When sector-specific taxes

are feasible, the tax that implements the optimal technology choice for sector i is equal to the

difference between expected discounted social and private damages:

(12) τi (µ,QN ) = µληi
δi − γi

ρ − gN
QN .

The next proposition notes several properties of these optimal taxes.

Proposition 7. The optimal use tax τi (µ,QN ) is larger in sectors with a larger probability of

irreversibility ηi and a larger difference between social and private damages δi − γi. It is log-

concave in time and limits to zero as t →∞ iff λ > gN .

The cross-sector comparative statics follow immediately from (12). Differentiating (12)

with respect to time yields

τ̇i (µ,QN )
τi (µ,QN )

=
µ̇

µ
+

Q̇N

QN
= −λ (1−µ) + gN .

Since µ declines before the disaster, τi (µ (t) ,QN (t)) is log-concave. The difference between

social and private damages from a disaster is increasing in QN , pushing taxes higher, while

growing optimism about the absence of a disaster pushes taxes lower. The tax is eventually

decreasing to zero iff learning about the disaster risk is sufficiently fast, λ > gN .

Sector-specific taxes require detailed information about damages and may generally be

difficult to implement. Even in the benchmark case in which αi and ηi are constant across sec-

tors, the next proposition shows that a sector-independent tax scheme cannot correct inefficient

equilibrium adoption unless social and private damages are positively affiliated.

Proposition 8. Suppose αi and ηi are constant across sectors. Given any sector-independent use

tax τ (µ,Q), firm i begins using technology N earlier than firm j iff γi ≤ γ j. Socially optimal

technology choices can be implemented for any initial state (µ (0) ,Q (0)) iff social and private

damages are positively affiliated. In this case, the following tax is optimal:

(13) τ (µ,Q) = µλη
L (µ, q)−κ (L (µ, q))

ρ − gN
QN .

This proposition clarifies that a sector-independent tax can differentially delay adoption

for sectors with different private damages γi, but it cannot alter the order of adoption. When

13Naturally, adoption taxes that are paid when new technologies are first introduced are equivalent.
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private and social damages are positively affiliated, the socially optimal and equilibrium orders

of adoption coincide, so a sector-independent tax can fully correct equilibrium inefficiencies.

When the optimal and equilibrium orders of adoption differ, a different policy that we refer

to as a regulatory sandbox may be more effective. Under this policy, sectors with social damages

below a threshold δ̂ (“inside the sandbox”) can choose their technology freely, while sectors

above the threshold are restricted from using the new technology until time T̂ . This policy

allows the planner to ensure that sectors with high social damages adopt only after the new

technology is established to be relatively safe. The next proposition demonstrates that the

sandbox policy can improve upon the laissez-faire equilibrium.

Proposition 9. Suppose αi and ηi are constant and γi < δi across sectors. Then there exists a

sandbox policy
�

δ̂, T̂
�

that strictly improves upon the laissez-faire equilibrium.

In Appendix D, we provide additional details about optimal regulatory sandboxes and com-

pare them to sector-independent taxes. In general, each of these policies can improve upon

the laissez-faire equilibrium, and combining both is better: A sector-independent tax can dif-

ferentially delay adoption for sectors with varying private damages γi, but it cannot alter the

order of adoption. A regulatory sandbox can alter the order by delaying adoption for sectors

with high social damages.

To implement welfare-improving use taxes or regulatory sandboxes, regulators must have

some knowledge about the potential social damages from the new technology across different

sectors. Although there is still substantial uncertainty about these damages from AI, assum-

ing some knowledge is reasonable and consistent with current approaches to regulation. For

example, the EU AI Act proposal outlines a framework in which an AI system is subject to dif-

ferent regulations depending on whether its intended use is considered “high risk” (e.g., the

operation of critical infrastructure, employment and worker management processes, or law

enforcement; see European Commission, 2021). The results in this section provide a founda-

tion for this regulatory approach and also suggest that these policies should be updated as AI

technologies become more capable and as society learns more about the risks.

V Concluding Remarks

Advances in generative AI technologies, such as large language models, have intensified both

hopes of more rapid economic growth and concerns about their potential negative conse-

quences. Despite a robust public discussion on AI, there are currently no economic models

of the regulation of transformative technologies. This paper has taken a first step in building

such a model to provide novel insights for this debate.
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We consider the adoption decision of a new, transformative technology that can increase

productivity growth across all sectors of the economy but also raises risks of misuse, which we

model as the stochastic arrival of a “disaster”. If a disaster occurs, some of the sectors using the

new technology may be unable to switch back to the old, safe technology. Whether a disaster

will occur is unknown, and society gradually learns about it over time. Consequently, adoption

should be gradual and typically follows a convex path, initially growing slowly before acceler-

ating later. Most surprisingly, a faster growth rate of the new technology should lead to slower

adoption when potential damages are large: Although the planner is risk-neutral, she has a

precautionary motive as irreversible damages imply that it is better to wait and learn about the

likelihood of a disaster. These irreversible damages are greater when the new technology has a

higher growth rate, strengthening the precautionary motive. Finally, if private firms internalize

only part of the social damages from transformative technologies, equilibrium adoption is too

fast and necessitates regulatory policies.

There are many interesting areas left for future work. First, in contrast to our baseline

assumptions, early adoption may increase risks or may facilitate either general learning about

potential misuses of the new technology or sector-specific learning about its “safe use”. These

considerations may motivate “experimentation” by adopting the technology in a few sectors or

trying different uses in some areas, which is an important topic for future work.

Second, many of the misuses of new AI technologies depend on market structure and other

aspects of regulation (e.g., concerning disinformation, discrimination, or privacy), and it would

be interesting to explore how these affect optimal and equilibrium adoption.

Third, we simplified the analysis by assuming risk neutrality. Jones (2023) demonstrates

that the extent of risk aversion and the precise form of damages have a first-order effect on the

trade-off between higher growth and the likelihood of a disaster, and these can be incorporated

in future analyses of learning about misuses of new transformative technologies.

Fourth, we abstracted from choices about how new technologies may be used. If regulations

or other factors can prevent misuse of technology, then faster adoption can become optimal.

Finally, we showed that the optimal path of adoption depends on a few parameters, but

there is currently a huge amount of uncertainty about their values. Careful empirical assess-

ment of the costs and benefits of new, transformative technologies like generative AI is an

obvious area for future research.
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Appendix A contains proofs for the results in the main text. In Appendices B, C, and D, we

analyze extensions of our benchmark model and discuss the robustness of our main results.

A Proofs for the Main Text

In this part of the Appendix, we provide proofs for results in the main text.

A.1 Proofs for Section II

Proof of Proposition 2. Let L (t) ≡ L (µ (t) , q (t)) denote the damage threshold at time t ∈
(0,∞). Making use of Proposition 1 and the equation q (t) = q (0) + (gN − gO) t, the damage

threshold equals

L (t) = α+ (ρ − gN )
�

α− exp (− [q (0) + (gN − gO) t])
µ (t)λη

−
exp (− [q (0) + (gN − gO) t])

ρ − gO

�

.(A1)

It is immediate that L (t) is strictly decreasing in gO, so adoption at time t is nonincreasing in

gO. Note that adoption is also strictly decreasing whenever L (t) ∈
�

δ, δ̄
�

.

Considering instead the comparative static with respect to gN , we can differentiate to find

∂ L (t)
∂ gN

= (1+ (ρ − gN ) t)
�

1
µ (t)λη

+
1

ρ − gO

�

exp (− [q (0) + (gN − gO) t])−
α

µ (t)λη
.

This derivative is positive iff

(1+ (ρ − gN ) t)
�

1+
µ (t)λη
ρ − gO

�

exp (− [z (0) + (gN − gO) t])≥ α.

The left side limits to zero as t → ∞, so there exists an earliest time t̄ < ∞ such that

∂ L (t)/∂ gN < 0 for t > t̄. If t̄ > 0, then the left side of the inequality above must be de-

creasing in t at t = t̄. Since the left side is also decreasing in gN , we must have that t̄ is

decreasing in gN .
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Finally, the bracketed term in (A1) limits to a finite value as gN increases to ρ, which

implies that L (t) limits to α. Since the lower support of F satisfies α ≤ δ, we conclude that

X (µ (t) , q (t)) limits to zero. ■

Proof of Proposition 3. Using the expression for the damage threshold (8), we can calculate

L̇ (µ, q)
ρ − gN

=
1−µ
µ

α− exp (−q)
η

+
�

1
µλη

+
1

ρ − gO

�

(gN − gO)exp (−q) .

This equation implies that L̇ (µ, q) is strictly decreasing in gO. Differentiating implies that

L̇ (µ, q) is strictly decreasing in gN iff

αexp (q)− 1>
(ρ − gN )− (gN − gO)

1−µ

�

1
λ
+
µη

ρ − gO

�

.

Differentiating L̇ (µ, q) again yields

L̈ (µ, q)
ρ − gN

= λ
1−µ
µ

α− exp (−q)
η

+
�

2
1−µ
µ
−
�

1
µλ
+

η

ρ − gO

�

(gN − gO)
�

(gN − gO)
exp (−q)
η

.

Provided that α > exp (−q), this expression immediately implies that L̈ (µ, q)< 0 iff gN − gO >

G (µ, q), where G (µ, q) is the largest solution to the quadratic equation

λ
1−µ
µ

α− exp (−q)
η

+
�

2
1−µ
µ
−
�

1
µλ
+

η

ρ − gO

�

G (µ, q)
�

G (µ, q)
exp (−q)
η

= 0.

Equivalently,

G (µ, q) = λ
1+
r

1+
�

1+ µλη

ρ−gO

�

(1−µ)−1 (αexp (q)− 1)
�

1+ µλη

ρ−gO

�

(1−µ)−1
.

We observe that G is decreasing in µ and increasing in q, so that Ġ (µ, q)> 0 with

lim
t→∞

G (µ (t) , q (t)) =∞.

■

Proof of Proposition 4. See the proof of Proposition C.2 in Appendix C. ■
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A.2 Proofs for Section IV

Proof of Proposition 8. With a sector-independent use tax τ (µ,Q), it is privately optimal to

use technology N before the disaster iff

(A2) αQN −QO −τ (µ,Q)> µλη
�

1
ρ − gO

QO −
α− γi

ρ − gN
QN

�

.

The right side of this inequality is strictly increasing in γi. Given an initial state (µ (0) ,Q (0)),
let t̃ i denote the time at which firm i begins using technology N . For any sector j with private

damages γ j, we immediately observe that γi ≤ γ j iff t̃ i ≤ t̃ j. The latter inequality is strict if

γi < γ j and t̃ j > 0.

If γi and δi are positively affiliated, the tax (13) suffices to implement socially optimal

technology choices in equilibrium. To see this, note that the private optimality condition (A2)

implies that firm i uses technology N in state (µ,Q) iff γi < L̂ (µ, q), where

L̂ (µ, q)−α+ L (µ, q)−κ (L (µ, q))
ρ − gN

=
α− exp (−q)
µλη

−
exp−q
ρ − gO

.

Using the definition of the damage threshold L (µ, q) from Proposition 1, this equation reduces

to L̂ (µ, q) = κ (L (µ, q)). Since κ is strictly increasing, we conclude that equilibrium technology

choices are efficient: Firm i uses technology N iff

δi = κ
−1
�

γi

�

< κ−1
�

L̂ (µ, q)
�

= L (µ, q) .

Finally, fix an initial state (µ (0) ,Q (0)) such that L (µ (0) ,Q (0))< δ, so that it is inefficient

for any sector to use technology N at t = 0. Suppose that a given sector-independent tax

τ (µ,Q) implements socially optimal technology choices in equilibrium. We can define the

affiliation function κ as follows: For any value of social damages δ ∈
�

δ, δ̄
�

, let t (δ) > 0 be

the time at which sectors with social damages δ (socially) optimally begin using technology

N . Since τ (µ,Q) implements socially optimal technology choices in equilibrium, these same

sectors must find it privately optimal to begin using technology N at time t (δ). These sectors

must have a common value of private damages γ (t (δ)): If one sector had a larger value of

private damages γ′ > γ (t (δ)), it would find it privately optimal to delay using technology

N , contradicting the assumption that τ implements socially optimal technology choices. As a

result, the affiliation function κ (δ) = γ (t (δ)) is well-defined, and we conclude that social and

private damages must be positively affiliated. ■

A-3



Proof of Proposition 9. Given a threshold δ̂ and wait time T̂ , the planner’s objective dis-

counted to t = 0 can be written

V
�

δ̂, T̂
�

=

∫ T̂

0

exp (−ρt)

∫

δi<δ̂

§

�

1− x
�

µ(t), q(t),γi

��

�

1+µ(t)λη
1

ρ − gO

�

QO(t)

+x
�

µ(t), q(t),γi

�

�

α+µ(t)λη
α−δi

ρ − gN

�

QN (t)
ª

did t

+

∫ T̂

0

exp (−ρt)

∫

δi≥δ̂

�

1+µ(t)λη
1

ρ − gO

�

QO(t)did t

+

∫ ∞

T̂

exp (−ρt)

∫ 1

0

§

�

1− x
�

µ(t), q(t),γi

��

�

1+µ(t)λη
1

ρ − gO

�

QO(t)

+x
�

µ(t), q(t),γi

�

�

α+µ(t)λη
α−δi

ρ − gN

�

QN (t)
ª

did t.

Here x
�

µ, q,γi

�

denotes the unrestricted equilibrium technology choice given state (µ, q) and

private damages γi:

x
�

µ, q,γi

�

=







1 if αi − exp(−q)> µλη
�

1
ρ−gO

exp(−q)− α−γi
ρ−gN

�

,

0 else.

With δ̂ fixed, we can differentiate V with respect to T̂ to find

exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂
= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di.

To simplify notation, we have left the dependence of the state (µ,Q) on the wait time T̂ implicit.

First observe that the optimal wait time is bounded:

lim
T̂→∞

1

QN

�

T̂
�

∂ V
�

δ̂, T̂
�

∂ T̂
= −α
∫

δi≥δ̂
di < 0.

Let t̃ i denote the equilibrium time of adoption for sector i when unrestricted, and let t(δ̂)≥ 0

denote the greatest lower bound for these times across all sectors above the threshold (δi ≥ δ̂).

Note that we can write

exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂
= −
∫

δi≥δ̂, t̃ i≤T̂

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�

di.
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Clearly ∂ V (δ̂)/∂ T̂ = 0, and ∂ V (δ̂)/∂ T̂ > 0 for T̂ in a neighborhood of t
�

δ̂
�

, because

∂

∂ T̂
exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂

�

�

�

�

�

T̂=t(δ̂)

= −
∫

δi≥δ̂, t̃ i=t(δ̂)

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�

di.

On the right-hand side, the state (µ,Q) is evaluated at t(δ̂). Since γi < δi for all sectors

above the threshold, the right-hand side must be strictly positive. This implies that V is strictly

increasing in T̂ in a neighborhood of t(δ̂), so the optimal wait time T̂ must be interior. It

satisfies the first-order condition

0= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di.

Setting T̂ = t(δ̂) replicates the laissez-faire equilibrium, so this argument establishes that a

sandbox policy with δ̂ > δ can strictly improve upon the laissez-faire equilibrium. ■
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B Extensions

In this part of the Appendix, we discuss one generalization and two extensions.

B.1 Unrestricted Heterogeneity across Sectors

In this section, we briefly describe how our analysis generalizes without the simplifying assump-

tion thatαi andηi are constant across sectors (but maintaining the “large damages” assumption

(6)). The basic optimality condition (7) describes the solution to the planner’s problem, and

we can rearrange this condition to observe that there exists a sector-specific damage threshold

Li(µ, q) such that it is optimal to adopt the new technology in sector i iff δi < Li(µ, q). This

damage threshold satisfies the analogue to (8) with αi and ηi in place of α and η:

Li(µ, q)−αi

ρ − gN
=
αi − exp(−q)
µληi

−
exp(−q)
ρ − gO

.

The comparative statics of Proposition 1 naturally hold for this sector-specific damage thresh-

old, and they should now be interpreted as comparative statics for the adoption of the new

technology within sector i as opposed to economy-wide.

Adoption of the new technology is defined exactly as in the benchmark model:

X (µ, q) =

∫ 1

0

x i(µ, q)di.(B1)

It is straightforward to observe that the comparative statics of Proposition 2 apply immediately

to sector-level adoption x i(µ, q) = 1 [δi < Li(µ, q)] and, provided that the joint distribution of

the sector characteristics (δi,αi,ηi) is well-behaved (e.g., compact support), to overall adop-

tion X . The slope and curvature results of Proposition 3 extend immediately to the sector-

specific damage threshold Li(µ, q). In particular, the second part of this proposition describes

a sense in which adoption is convex within each sector, and with sufficient dispersion in dam-

ages δi this provides a force for convex adoption across sectors. If we additionally relax the

assumption that damages are large (6), the key implication of Proposition 4 holds: With q(0)
sufficiently low, it remains optimal to delay adoption in sector i even if gN increases toward the

discount rate ρ. The optimality of gradual adoption is robust to all of these generalizations.

Finally, we note that the same adjustments can be made to our analysis of equilibrium

adoption, and similarly for our regulation results: Proposition 8 generalizes in the sense that

sector-independent use taxes can restore socially optimal adoption if and only if the laissez-

faire and socially optimal orders of adoption coincide. Positive affilitation of damages again
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suffices for this, but with heterogeneity in αi and ηi, it is typically stricter than necessary. By

a similar argument as in the proof of Proposition 9, it can again be verified that a regulatory

sandbox can generally improve upon the laissez-faire equilibrium.

B.2 Heterogeneous αi

Suppose that ηi and δi are constant across sectors, and let Fα denote the smooth distribution

function for αi with support
�

α, ᾱ
�

. We maintain the assumption that αi ≤ δ for each sector i,

which requires ᾱ ≤ δ. Making use of the planner’s optimality condition (7), we observe that

there exists a productivity threshold A(µ, q) such that it is optimal to use the new technology

in sector i iff αi > A(µ, q). Total adoption of the new technology is then the fraction of sectors

above the productivity threshold:

X (µ, q) = 1− Fα (A(µ, q)) .

The following proposition characterizes the productivity threshold and is analogous to Propo-

sition 1 in Section II.B.

Proposition B.1. It is socially optimal to use technology N in sector i iff αi > A(µ, q), where

(B2) A(µ, q) +µλη
A(µ, q)−δ
ρ − gN

=
�

1+
µλη

ρ − gO

�

exp (−q) .

A(µ, q) (and thus 1 − X (µ, q)) is strictly decreasing in q; strictly increasing in gO and δ; and

strictly increasing in λ, η, µ, and gN provided that A(µ, q)< δ.

Proof. The characterizing equation (B2) follows from the planner’s optimality condition (7).

The comparative statics are immediate from (B2). ■
The analogue of Proposition 2 also holds:

Proposition B.2. For all t > 0:

1. X (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̄ <∞ such that X (µ (t) , q (t)) is decreasing in gN if t > t̄ .

The time t̄ is decreasing in gN .

3. Adoption falls to zero as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t)) = 0.

Comparative statics for the evolution of the productivity threshold A(µ, q) over time are

less tractable than for the damage threshold L (µ, q) in the benchmark model. The following
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proposition provides some guidance about Ȧ(µ, q) and Ä(µ, q) for the limiting case in which

the new and old technologies grow at the same rate.

Proposition B.3. When g = gO = gN :

1. Ȧ(µ, q) is negative and increasing in g.

2. There exists a posterior µ̂ ∈ (0,1/2) such that if µ≤ µ̂, Ä(µ, q) is positive.

Proof. When g = gO = gN , the characterizing equation (B2) becomes

A(µ, q) =
1

1+ ρ−g
µλη

δ+ exp (−q) .

The quality gap q is constant since g = gO = gN . Differentiating in t then yields

Ȧ(µ, q) = µ̇
ρ−g
λη
�

µ+ ρ−g
λη

�2δ,

Ä(µ, q) =

�

µ̈− 2µ̇2 1

µ+ ρ−g
λη

� ρ−g
λη
�

µ+ ρ−g
λη

�2δ.

Clearly Ȧ(µ, q)< 0 because µ̇ < 0. Using the equations µ̇= −λµ (1−µ) and µ̈= −λµ̇ (1− 2µ),
we observe that Ä(µ, q)> 0 iff

1− 2µ > 2
µ (1−µ)
µ+ ρ−g

λη

.

This inequality is violated at µ = 1/2, but it is satisfied at µ = 0. Hence there exists a cutoff

µ̂ ∈ (0,1/2) such that it is satisfied for µ≤ µ̂. ■

Corollary B.1. If g = gO = gN and µ ∈ (0, µ̂], adoption is concave over time: Ẍ (µ, q)< 0.

These results imply that learning dynamics favor concave adoption over time when sectors

are heterogeneous according to comparative advantage, in contrast to the case with heteroge-

neous damages considered in the main text.

B.3 Constant Damages

In this section, we assess the role of the assumption that post-disaster damages scale with

quality QN by revisiting the analysis of Section II under an alternative assumption: Post-disaster
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damages in sector i are a fixed constant ∆i ≥ 0. In this case, the planner’s HJB equations (4,

5) are still valid, but total damages D (x) are now independent of Q and satisfy

D (x) =

∫ 1

0

x i∆idi.

The planner uses technology N in sector i after the disaster iff x̄ i = 1 or αiQN −∆i > QO.

If the disaster strikes when the quality vector is Q and the technology choice in sector i is

unconstrained, the planner uses technology O for a time period of length T̄ (Q, g,∆i), after

which she switches to technology N . The time period T̄ (Q, g,∆i) is equal to zero if αiQN−∆i ≥
QO, and otherwise it is the unique solution to the equation

αiQN exp
�

gN T̄ (Q, g,δi)
�

−∆i =QO exp
�

gO T̄ (Q, g,δi)
�

.

The solution always exists and is unique since gN > gO.

By the same argument as in Section II.A, technology N is used in sector i before the disas-

ter if the increase in flow output αiQN −QO dominates the expected loss due to the disaster.

The latter is the product of the expected arrival rate of the disaster µλ, the probability of irre-

versibility ηi, and the difference between the discounted value of net output when technology

choice is unconstrained and when it is constrained to technology N . If the technology choice

in sector i is unconstrained after the disaster, the sector produces discounted net output

∫ T̄ (Q,g,δi)

0

exp (−ρt)exp (gO t)QOd t +

∫ ∞

T̄ (Q,g,δi)

exp (−ρt) [αi exp (gN t)QN −∆i] d t.

When constrained to technology N , the sector’s discounted net output is

∫ ∞

0

exp (−ρt) [αi exp (gN t)QN −∆i] d t.

We then that it is optimal to use technology N in sector i before the disaster iff

(B3) αiQN −QO > µληi

∫ T̄ (Q,g,δi)

0

exp (−ρt) {exp (gO t)QO − [αi exp (gN t)QN −∆i]} d t.

This optimality condition is analogous to (7) in the benchmark model, but with three differ-

ences. First, we have not explicitly integrated the integral in (B3) as we have in (7). Second,

in (B3) the fixed damages∆i replace the quality-dependent damages QNδi in (7). Finally, with

quality-independent damages ∆i it is always optimal to use technology N at some point after
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Figure B.1: Adoption curves X (t) ≡ X (µ (t) , q (t)) for different values of gN . The parameter-
ization is the same as in Figure 1, but with ∆= 1 and ∆̄= 5.

the disaster in sector i: T̄ (Q, g,δi) <∞. This contrasts with the benchmark model, in which

the assumption αi ≤ δi implies that the planner will always use technology O after the disaster

when possible.

Suppose as in Section II.B that αi and ηi are constant across sectors. The following propo-

sition is analogous to Proposition 1 in Section II.B. It demonstrates that optimal technology

choices can be described using a damage threshold L (µ,Q) and provides comparative statics.

Proposition B.4. It is socially optimal to use technology N in sector i before the disaster iff ∆i <

L (µ,Q), where L (µ,Q) is the unique solution to the equation

αQN −QO(B4)

= µλη

∫ T̄ (Q,g,L(µ,Q))

0

exp (−ρt) {exp (gO t)QO − [αexp (gN t)QN − L (µ,Q)]} d t.

L (µ,Q) (and thus X (µ,Q)) is strictly increasing in α, QN , and gN and strictly decreasing in gO,

λ, µ, and QO.

We omit the proof details, because the argument is almost identical to the proof of Proposi-

tion C.1 in Appendix C.2. This proposition demonstrates that, when damages from technology

N do not scale with its quality QN , optimal adoption is increasing in the growth rate gN . This
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contrasts with the corresponding result in Proposition 1, demonstrating that the assumption of

proportional damages has significant implications for optimal adoption. We argue that many

of the conjectured dangers of (generative) AI more naturally correspond to the case in which

damages scale with the capabilities (quality) of rapidly improving models.

We illustrate these results in Figure B.1. We modify the calibration of Figure 1 only by

assuming constant damages ∆i uniformly distributed over
�

∆, ∆̄
�

, where ∆ = 1 and ∆̄ = 5,

and by initializing Q(0) = (1,1). As a result, the initial value of the damages in each sector is

the same as in the quantitive example in the main text, as is the quality gap q(0) = 0. Consistent

with Proposition B.4, we observe that adoption is increasing in the growth rate gN . Moreover,

adoption is much faster than in Figure 1 because (potential) damages do not increase over

time as technology N improves.
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C Analysis with Unrestricted Damages

In this part of the Appendix, we analyze the benchmark model without assuming large damages

(6).

C.1 Socially Optimal Technology Choice

As described in the main text, the planner uses technology N after the disaster iff x̄ i = 1 or
�

αi − γi

�

QN > QO. Letting q = log (QN/QO) denote the log quality gap between the technolo-

gies, we can equivalently define a threshold gap qi such that the planner uses technology N

after the disaster iff x̄ i = 1 or q ≥ qi:

(C1) qi =







− log (αi −δi) if αi > δi,

∞ else.

At the onset of the disaster, if q < qi the planner optimally reverts to using technology O in

sector i if possible. If qi <∞, the planner eventually uses technology N again when it attains

a sufficiently large lead over technology O.

With this characterization, we can directly integrate the post-disaster HJB equation (5) and

take expectations with respect to x̄:

E [W ( x̄ ,Q)| x] =
∫ 1

0

�

1− x iηi

�

§�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO

+exp
�

−
ρ − gN

gN − gO
(qi − q)+

�

αi −δi

ρ − gN
QN

ª

+ x iηi
αi −δi

ρ − gN
QN di.

Here we use the notation (qi − q)+ =max {qi − q, 0}. Considering the planner’s problem before

the disaster (4), we observe that it is optimal to use technology N in sector i iff

αiQN −QO > µληi

§�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO(C2)

−
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN

ª

.

This optimality condition differs from (7) because the discounted future net output from using

technology O at the time of the disaster now accounts for the possibility that technology N is

used after the quality gap q exceeds qi.
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C.2 Comparative Statics for Socially Optimal Adoption

Suppose as in Section II.B that αi and ηi are constant across sectors, but make no assumption

about the ranking between δi and α. Let q̄ (δi) = qi denote the quality gap above which it is

optimal to use technology N in sector i after the disaster (C1), making explicit the dependence

on δi. The following proposition shows that optimal technology choices can be described using

a damage threshold L (µ, q) and provides comparative statics, generalizing Proposition 1 from

Section II.B.

Proposition C.1. It is socially optimal to use technology N in sector i before the disaster iff δi <

L (µ, q), where L (µ, q) is the unique solution to the equation

α− exp (−q) = µλη
§�

1− exp
�

−
ρ − gO

gN − gO
(q̄ (L (µ, q))− q)+

��

1
ρ − gO

exp (−q)(C3)

−
�

1− exp
�

−
ρ − gN

gN − gO
(q̄ (L (µ, q))− q)+

��

α− L (µ, q)
ρ − gN

ª

.

L (µ, q) (and thus X (µ, q)) is strictly increasing in α and q and strictly decreasing in gO, λ, and

µ. It is strictly decreasing in gN if L (µ, q)> α and strictly increasing in gN if L (µ, q)< α.

Proof. Throughout the proof, we suppress the arguments of the damage threshold L (µ, q) to

simplify notation. The results described in the proposition are easier to prove if we re-write

the discounted values on the right-hand side of (C3) as integrals over time. To do this, given

a quality gap q, let T̄ (q, g,δ) denote the length of time after the disaster during which it is

optimal to use technology O instead of technology N in a sector with damages δ:

T̄ (q, g,δ) =







max
¦

− log(α−δ)−q
gN−gO

, 0
©

if α > δ,

∞ else.

If the sector is not constrained to technology N , its discounted net output after the disaster is

(C4)

∫ T̄ (q,g,δ)

0

exp (−ρt)exp (gO t)QOd t +

∫ ∞

T̄ (q,g,δ)

exp (−ρt)exp (gN t) (α−δ)QN d t.

Similarly, its discounted net output when constrained to technology N is

(C5)

∫ ∞

0

exp (−ρt)exp (gN t) (α−δ)QN d t.

The bracketed term in (C3) is the difference between the previous two terms above for the
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marginal sector (with δ = L), divided by QN . The right-hand side of (C3) can then be written

RHS= µλη

∫ T̄ (q,g,L)

0

exp (−ρt) [exp (gO t)exp (−q)− exp (gN t) (α− L)] d t.

We first demonstrate that, when α > exp (−q) so that technology N is more productive

than technology O, there always exists a unique solution L to (C3). We observe that RHS is

continuous in L, equals zero when L ≤ α−exp (−q), and limits to infinity as L→∞. Moreover,

RHS is strictly increasing in L when L > α− exp (−q): This condition implies T̄ (q, g, L) > 0,

and we can differentiate RHS to find

∂ RHS
∂ L

= µληexp
�

−ρ T̄
� �

exp
�

gO T̄
�

exp (−q)− exp
�

gN T̄
�

(α− L)
� ∂ T̄
∂ L

+µλη

∫ T̄ (q,g,L)

0

exp (−ρt)exp (gN t) d t

= µλη

∫ T̄ (q,g,L)

0

exp (−ρt)exp (gN t) d t

> 0.

Note that the second equality holds by the Envelope Theorem: T̄ maximizes the discounted

net output from the marginal sector after the disaster, assuming its technology choice is un-

constrained. As a result RHS does not vary locally with respect to T̄ (∂ RHS/∂ T̄ = 0). Given

these properties of RHS, the Intermediate Value Theorem guarantees a unique solution L to

(C3) when α > exp (−q). Moreover, it follows from the optimality condition (C2) that it is

socially optimal to use technology N in sector i before the disaster iff δi < L (µ, q).
The comparative statics for the damage threshold L follow from the Implicit Function The-

orem. Holding L fixed, we immediately observe that RHS is decreasing in α and increasing in

µ, λ, and η. Differentiating with respect to q, gO, and gN yields

∂ RHS
∂ q

= −µλη
∫ T̄

0

exp (−ρt)exp (gO t)exp (−q) d t,

∂ RHS
∂ gO

= µλη

∫ T̄

0

exp (−ρt)exp (gO t)exp (−q) td t,

∂ RHS
∂ gN

= −µλη
∫ T̄

0

exp (−ρt)exp (gN t) (α− L (µ, q)) d t.

These expressions imply that RHS is decreasing in q, increasing in gO, and decreasing (increas-

ing) in gN iff α > (<)L (µ, q). Collecting these results, the Implicit Function Theorem delivers
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the comparative statics stated in the proposition. ■

The proposition demonstrates that almost all comparative statics from Proposition 1 hold

without the assumption that social damages always exceed output from technology N after

the disaster (αi ≤ δi). However, the comparative static with respect to gN is sensitive to this

assumption. When damages in the marginal sector exceed output (L (µ, q) > α), the damage

threshold is decreasing in gN as in Proposition 1. When damages in the marginal sector are

below output (L (µ, q)< α), the damage threshold is instead increasing in gN .

The following proposition generalizes Proposition 2 to provide full comparative statics for

adoption with respect to the growth rates gO and gN , including both the direct effects described

in Proposition C.1 and the indirect effects through the state (µ(t), q(t)).

Proposition C.2. Suppose αi andηi are constant across sectors. For all t with L (µ (t) , q (t))< α:

1. X (µ (t) , q (t)) is decreasing in gO.

2. X (µ (t) , q (t)) is increasing in gN .

3. If q(0) is sufficiently low and X (µ (t) , q (t)) < F (α), X (µ (t) , q (t)) is bounded strictly

below F (α) as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t))< F (α).

Proof. The first two results follow from Proposition C.1 after noting that the damage threshold

L is increasing in the quality gap q, and in turn the quality gap q(t) at time t is decreasing in

gO and increasing in gN . The final result of the proposition follows by taking the limit gN ↑ ρ
in (C3). More precisely, recall from the optimality condition (C2) that it is socially optimal to

use technology N in sector i at time t before the disaster only if

α− exp (−q(t))≥ µ(t)λη
§�

1− exp
�

−
ρ − gO

gN − gO
(qi − q(t))+

��

1
ρ − gO

exp (−q(t))(C6)

−
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q(t))+

��

α−δi

ρ − gN

ª

.

Just as in the proof of Proposition C.1, the right-hand side of this inequality can be written

RHS= µ(t)λη

∫ T̄ (q(t),g,δi)

0

exp (−ρs) [exp (gOs)exp (−q(t))− exp (gN s) (α−δi)] ds,

For gN < ρ, this function is continuous and nondecreasing in δi. At δi = α, it takes the value

RHS=
µ(t)λη
ρ − gO

exp (−q(t)) .
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In the limit as gN ↑ ρ, (C6) implies that it is socially optimal to use technology N in sector i

with damages δi = α only if

αexp (q(0) + (ρ − gO)t)− 1≥
µ(t)λη
ρ − gO

.

For t fixed, this inequality is violated for q(0) sufficiently small (but potentially still positive).

Since RHS is continuous in δi ≤ α, this implies that L (µ(t), q(t))must remain bounded strictly

below α. If X (µ (t) , q (t)) < F (α), this immediately implies that X (µ(t), q(t)) is bounded

strictly below F(α). ■

Notably, in the limit gN ↑ ρ adoption does not tend to either of the extreme values 0 or

F(α), in contrast to the corresponding result in Proposition 2. This holds because, for any

sector i with δi < α, the discounted net output after the disaster tends to infinity as gN ↑ ρ
regardless of whether the sector is constrained to use technology N after the disaster. However,

the difference between the discounted net output when unconstrained and the discounted net

output when constrained tends to a finite limit. Socially optimal technology choices before the

disaster depend on this difference (see C2), so provided that δi is sufficiently close to α and

the initial quality gap q(0) sufficiently low, it can remain optimal to delay using technology N

in sector i before the disaster even when gN ↑ ρ.

We illustrate these results in Figure C.1 by depicting adoption curves for a stylized param-

eterization of the model. We modify the calibration of Figure 1 only by assuming that the

distribution of damages δi is uniform over [0,5] instead of [1,5]. Technology choices for sec-

tors with δi ∈ [1,5] are exactly as in Section II, and since these sectors comprise 5/6 of all

sectors in this calibration, the adoption curves in Figure C.1 when X (t)≥ 5/6 are identical to

the adoption curves in Figure 1.

When instead X (t) ∈ (0,1/6), the sectors adopting technology N produce positive net

output after the disaster, so the analysis in this appendix becomes relevant. In this region, we

observe that adoption is increasing in gN , consistent with Proposition C.2.

C.3 Equilibrium Technology Choice

Using the same derivations as for the optimal technology choice, firm i uses technology N after

the disaster iff x̄ i = 1 or q ≥ q̃i, where

q̃i =







− log
�

αi − γi

�

if αi > γi,

∞ else.
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Figure C.1: Adoption curves X (t) for different values of gN . The parameterization is the same
as in Figure 1, but with δ = 0.

Note that q̃i ≤ qi since γi ≤ δi. This implies that the private firm returns to using technology

N more quickly after the disaster than the planner. Integrating the firm’s post-disaster HJB

equation (10) and taking expectations with respect to x̄ i yields

E [Φi ( x̄ i,Q)| x i] =
�

1− x iηi

�

§�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO

+exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

�

αi − γi

ρ − gN
QN

ª

+ x iηi
αi − γi

ρ − gN
QN .

It is then privately optimal to use technology N in sector i before the disaster iff

αiQN −QO > µληi

§�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO(C7)

−
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

ª

.

We observe two differences between this condition and the planner’s optimality condition (C2),

First, as in the main text, private damages γi appear in (C7) instead of the social damages that

appear in (C2). Second, the firm begins using technology N more quickly after the disaster

than the planner (q̃i ≤ qi). Both effects tend to reduce the net private cost of irreversibility and

incentivize the firm to use technology N more often than the planner before the disaster.
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Lemma C.1. If the social planner uses technology N in sector i in state (µ,Q) before the disaster,

then so does firm i.

Proof. The statement holds provided that firm i’s opportunity cost to using technology N

instead of technology O at the time of the disaster is smaller than the planner’s opportunity

cost:
�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN .

Replacing γi with δi yields the intermediate inequality

�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi −δi

ρ − gN
QN .

Optimality of qi in the planner’s problem after the disaster yields the remaining inequality

�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi −δi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN .

■
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D Other Issues in Regulation

In this part of the Appendix, we explore second-best tax regulation schemes when private and

social damages are not positively affiliated, and we provide additional details about optimal

regulatory sandboxes and discuss their advantages relative to sector-independent taxes.

D.1 Second-Best Tax Regulation

Aside from the special case in which social and private damages are positively affiliated, a

sector-independent tax cannot implement the optimal technology choices in equilibrium. More

generally, use taxes can allow the planner to improve upon laissez-faire technology choices even

when optimal ones cannot be implemented. Suppose as in Proposition 8 that αi and ηi are

constant across sectors, but make no assumptions on the joint distribution of δi and γi. In each

state (µ,Q) before the disaster, the planner chooses the use tax τ (µ,Q) to maximize output

less the expected discounted social cost from the disaster:

max
τ

∫ 1

0

§

�

1− x
�

µ,Q,γi,τ
��

�

QO +µλη
1

ρ − gO
QO

�

+x
�

µ,Q,γi,τ
�

�

αQN +µλη
α−δi

ρ − gN
QN

�ª

di.

Here x
�

µ,Q,γi,τ
�

describes the equilibrium technology choice for firm i when subject to the

tax:

x
�

µ,Q,γi,τ
�

=







1 if αQN −QO −τ > µλη
�

1
ρ−gO

QO −
α−γi
ρ−gN

QN

�

,

0 else.

Firms adopt technology N in order of increasing γi, so we can equivalently assume that the

planner selects a private damage threshold L̂ (µ, q) such that firm i uses technology N iff γi <

L̂ (µ, q). The optimal threshold trades off flow consumption against the expected social cost of

the disaster. When interior, it satisfies

(D1) αQN −QO = µλη

�

1
ρ − gO

QO −
α− δ̄
�

L̂ (µ, q)
�

ρ − gN
QN

�

.

Here δ̄ (γ) = E
�

δi|γi = γ
�

is the average social damages across all firms with private damages

γ. The optimality condition (D1) is analogous to the original optimality condition (7), but it

replaces a single sector’s social damages δi with the expectation δ̄ (γ). The planner’s problem is

concave iff δ̄ (γ) is increasing, in which case an interior solution can be optimal. If, for example,
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δ̄ (γ) is decreasing, then the planner cannot incentivize sectors with low social damages to use

technology N while sectors with high social damages use technology O. As a result, the planner

chooses L̂ (µ, q) = 0 (no use of N) or L̂ (µ, q) =∞ (full use of N). The latter is optimal when

αQN −QO > µλη

�

1
ρ − gO

QO −
α−E [δi]
ρ − gN

QN

�

.

D.2 Analysis of Sandbox Regulation

Proposition 9 in the main text demonstrates that it is generally optimal for the planner to

implement a regulatory sandbox with a strictly positive wait time T̂ . The optimal wait time

T̂ must satisfy the following interior first-order condition, which is derived in the proof of the

proposition in Appendix A:

(D2) 0= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di.

Here the state (µ,Q) is evaluated at the optimal time T̂ , and x
�

µ, q,γi

�

= 1 iff sector i would

use technology N in the laissez-faire equilibrium. Two forces determine the optimal wait time

T̂ : If sector i is above the threshold (δi ≥ δ̂) and would inefficiently use technology i at time T̂ ,

its laissez-faire technology choice would decrease social welfare, favoring a longer wait time:

x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

< 0.

If sector i would instead efficiently use technology i at time T̂ , its laissez-faire technology

choice would increase social welfare, favoring a shorter wait time.14

We can similarly derive the following interior first-order condition for the optimal threshold

δ̂, keeping T̂ fixed:

0=

∫ T̂

0

exp (−ρt)

∫

δi=δ̂

x
�

µ, q,γi

�

�

αQN −QO −µλη
�

1
ρ − gO

QO −
α− δ̂
ρ − gN

QN

��

d t.

If the threshold δ̂ is too high, a large fraction of sectors i face no restrictions on their technology

choices, and they subtract too much from social welfare between t = 0 and t = T̂ as they begin

using the new technology too quickly. If δ̂ is too low, then too many sectors i are forced to use

technology O between t = 0 and t = T̂ , foregoing the benefits of using technology N in these

14As this intuition suggests, it is straightforward to verify that, under the assumptions of Proposition 9, the
optimal wait time T̂ is nondecreasing in δ̂.
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sectors when it is efficient to do so. This analysis demonstrates that the optimal parameters
�

δ̂, T̂
�

are chosen to resolve a trade-off between restricting early use of the new technology in

sectors where expected damages are large, while allowing broad use later as the probability of

a disaster falls and the quality gap grows.

We conclude this section by observing that regulatory sandboxes are likely to dominate

(or complement) sector-independent taxes when the order of adoption differs substantially

between the equilibrium and social optimum. For example, suppose that private and social

damages are negatively affiliated: γi = κ (δi), where κ is strictly decreasing. Then Proposition

8 implies that, for any sector-independent tax τ (µ,Q), the order in which sectors adopt the new

technology in equilibrium is exactly the opposite of the optimal order. Moreover, the analysis

in Appendix D.1 implies that the optimal sector-independent tax is such that there exists a time

T̂ before which no sector uses technology N and after which every sector uses technology N .

This time is characterized by the equation

αQN

�

T̂
�

−QO

�

T̂
�

= µ
�

T̂
�

λη

�

1
ρ − gO

QO

�

T̂
�

−
α−E [δi]
ρ − gN

QN

�

T̂
�

�

.

These technology choices can also be implemented using the sandbox policy with threshold

δ̂ = δ and wait time T̂ . Hence a regulatory sandbox can achieve weakly greater social welfare

than any sector-independent tax when the misalignment in the order of adoption between the

equilibrium and the social optimum is severe.
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