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Regulating Transformative Technologies†

By Daron Acemoglu and Todd Lensman*

Transformative technologies like generative AI promise to acceler-
ate productivity growth across many sectors, but they also present 
new risks from potential misuse. We develop a  multisector technol-
ogy adoption model to study the optimal regulation of transforma-
tive technologies when society can learn about these risks over time. 
Socially optimal adoption is gradual and typically convex. If social 
damages are large and proportional to the new technology’s pro-
ductivity, a higher growth rate paradoxically leads to slower opti-
mal adoption. Equilibrium adoption is inefficient when firms do not 
internalize all social damages, and  sector-independent regulation is 
helpful but generally not sufficient to restore optimality. (JEL D21, 
H21, H25, O31, O33)

Recent breakneck advances in (generative) artificial intelligence have simultane-
ously raised hopes of productivity gains in many sectors and fears that this technol-
ogy will be used for nefarious purposes, even posing an existential risk comparable 
to nuclear war.1 Some experts have called to slow down or pause the development 
and adoption of AI technologies,2 partly because a slower rollout might provide 
time to identify danger areas and craft appropriate regulations. However, there is 
little economic analysis of these issues, and it is unclear whether slowing the devel-
opment and adoption of a promising, transformative technology ever makes sense.

In this paper, we develop a framework to provide a first set of insights on these 
questions. We consider a  multisector economy that initially uses an old technology 
but can switch to a new, transformative technology. This technology is transforma-
tive both because it enables a higher growth rate of output and because it is  general 
purpose and can be adopted across all sectors of the economy. It also poses new 
risks. We model these by assuming that there is a positive probability of a disaster, 
meaning that the technology will turn out to have many harmful uses. If a disaster 
is realized, some of the sectors that had started using the new technology may not 
be able to switch away from it, despite the social damages. Whether there will be a 

1 https://www.nytimes.com/2023/05/30/technology/ai-threat-warning.html
2 https://futureoflife.org/open-letter/pause-giant-ai-experiments/
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disaster is initially unknown, and society can learn about it over time. Critically, we 
assume that the greater are the new technology’s capabilities, the more damaging it 
will be when used for harmful purposes.3

In this environment, we study (socially) optimal and equilibrium adoption deci-
sions. We first show that it is optimal to adopt the new technology gradually because 
this enables greater learning. If all sectors immediately adopted and the disaster 
transpired, many of them would not be able to switch back and avoid the social 
damages. Gradual adoption allows society to gain from the new technology while 
updating its beliefs about whether it will have socially damaging uses. As more time 
passes without disaster, the belief that there will be a disaster declines (“no news 
is good news”). As society becomes more optimistic, it is optimal to adopt the new 
technology across a larger number of sectors. Under weak conditions, this adop-
tion path is slow and convex, accelerating only after society is fairly certain that a 
disaster will not occur. A simple quantitative example indicates that, for reasonable 
parameters for the new technology’s growth advantage and disaster risk, optimal 
adoption can be very slow.

Perhaps surprisingly, we demonstrate that adoption should be slower when the 
new technology has a higher growth rate and damages from a disaster are large. 
This is for two reasons. First, since damages after a potential disaster increase with 
the new technology’s capabilities, a higher growth rate means that damages also 
grow more quickly. Second, with a higher growth rate, the effective discount rate for 
future output declines, so that short delays in adoption are not very consequential 
for discounted utility.

Compared to optimal adoption, equilibrium adoption is inefficiently fast if private 
firms internalize only part of the social damages from a disaster. Even the order in 
which sectors adopt the new technology can differ between the equilibrium and the 
optimum—sectors that have high social damages are not necessarily those that have 
high private damages for adopters.4 Finally, we discuss how regulatory schemes can 
help to close the gap between optimal and equilibrium adoption. Pigouvian taxes, 
use taxes, or adoption taxes that are  sector specific can fully implement optimal 
adoption. When  sector-specific policies are not feasible, it is generally not possible 
to implement optimal technology choices, but regulation can still increase welfare 
by prohibiting use of the new technology in the sectors with the largest potential for 
harm until the risk of a disaster is sufficiently low.

This paper is a first attempt to study the consequences and regulation of trans-
formative technologies that can be used for good or bad. Our conclusions naturally 
depend on our modeling assumptions and should be interpreted with caution.

There are three literatures on which we build. The first is a growing literature 
on economic disasters (e.g., Rietz 1988; Barro 2006, 2009; Weitzman 2009, 2011; 
Martin and Pindyck 2015, 2021), which explores how the risk of rare economic 

3 These assumptions can be motivated with generative AI applications. For irreversibility, once large language 
models like ChatGPT are deployed in secondary education, it may be impossible to roll back their use, even after 
it becomes clear that they harm student learning. For the damages rising with productivity, many experts fear that 
these technologies either pose existential risks or will be misused, both of which would be more damaging when 
they have greater capabilities (e.g., Shevlane et al. 2023).

4 For example, if AI is used to create pervasive disinformation on social media, this may be disastrous for 
democracy but profitable for social media platforms.
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disasters affects asset prices and  cost-benefit analysis but does not focus on ques-
tions of technology adoption.

The second is a literature on technology adoption (e.g., Katz and Shapiro 1986; 
Parente and Prescott 1994; Foster and Rosenzweig 1995, 2010; Acemoglu, Aghion, 
and Zilibotti 2006; Acemoglu, Antràs, and Helpman 2007; Comin and Mestieri 
2014). Early work touching on AI includes Galasso and Luo (2019) and Agrawal, 
Gans, and Goldfarb (2019), but these papers do not focus on issues of learning about 
social damages from new technologies.

Third, there is a nascent literature focusing on damages from certain technologies 
(e.g., Bovenberg and Smulders 1995; Acemoglu et al. 2012). Most closely related 
to our paper are a few works that discuss the dilemma between growth and existen-
tial risk from new technologies, including AI. Jones (2023) develops a  one-sector 
growth model in which AI can be used to raise the aggregate growth rate but with 
small probability causes human extinction. Whether it is optimal to use AI depends 
crucially on the coefficient of relative risk aversion and whether consumption utility 
is bounded. Aschenbrenner (2020) incorporates existential risk into Jones’s (2016) 
model of growth and mortality and argues that existential risk rises with consump-
tion unless new mitigation technologies are developed. His model thus exhibits an 
“existential risk Kuznets curve” in which existential risk optimally increases until 
sufficient R&D resources are shifted toward mitigation. These two papers share 
our focus on the costs and benefits of transformative technologies, but they do not 
address the speed of adoption across sectors and do not feature learning about risks 
over time.

The rest of the paper is organized as follows. Section I presents our benchmark 
model. Sections II and III characterize optimal and equilibrium technology choices. 
Section IV discusses the conditions under which optimal technology choices can 
be restored through regulatory taxes, and Section V concludes. Omitted proofs and 
extensions are in the online Appendix.

I. Setup

We consider a  continuous-time economy that linearly produces a final good from 
a continuum of sectors  i ∈  [0, 1]  :

  Y =  ∫ 
0
  
1
   Y i   𝑑i. 

A representative household has  risk-neutral preferences defined over this final good 
and discounts the future at rate  ρ > 0 .

Each sector can use an old technology  O  or a new, transformative technology  N . 
We write   Q j   (t)  > 0  for the quality of technology  j ∈  {O, N}   at time  t ,   x i   (t)  = 1  if 
sector  i  switches its production process to technology  N  and   x i   (t)  = 0  otherwise. 
Sectoral output is

   Y i   =  (1 −  x i  )   Q O   +  x i    α i    Q N  , 
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where   α i    designates the comparative advantage of the new technology, which may 
vary if the new technology is  better suited for some sectors than others. Given tech-
nology choices  x =   ( x i  )  i∈ [0,1]     and qualities  Q =  ( Q O  ,  Q N  )  , final output is

  Y (x, Q)  =  ∫ 
0
  
1
   (1 −  x i  )   Q O   +  x i    α i    Q N   di. 

The new technology is transformative, both because it is  general purpose and can 
be applied across all sectors and because it enables not just the production of more 
output but a higher growth rate:

   g N   >  g O   ≥ 0. 

As a result of its restructuring impact on the economy, it also poses new risks. We 
model these by assuming that there may be a disaster whereby the new technol-
ogy generates negative effects. If a disaster happens, then there will be damages of  
  δ i    Q N   > 0  (in units of the final good) in the sectors that are using the technology. 
We assume that use of the new technology may be irreversible, so that with proba-
bility   η i   ∈  (0, 1)  , sector  i  cannot switch to technology  O  if it is using technology  N  
when the disaster strikes. The realization of this reversibility event is independent 
across sectors. We assume that damages are proportional to   Q N    because the negative 
effects correspond to misusing the better capabilities of the new technology.

In what follows, we reorder sectors so that   δ i    is increasing and assume that  i  
denotes the quantiles of the  δ  distribution, so that we can take this distribution to be 
uniform over some interval   [ δ _ ,  

_
 δ ]  . Overall damages then become

  D (x, Q)  =  ( ∫ 
0
  
1
   δ i    x i   𝑑i)   Q N  . 

The economy will experience a disaster with probability   μ –   ∈  (0, 1)  , and if there 
is a disaster, its arrival time  T  is distributed exponentially with rate  λ . We let  μ (t)   
denote the (planner’s or society’s) posterior belief at  t  that there will be a disas-
ter, assuming one has not yet arrived. We impose rational expectations, so that  
 μ (0)  =  μ –    and the posterior belief evolves according to Bayes’ rule:

(1)   μ ˙   (t)  = −λμ (t)  [1 − μ (t) ] . 

A few comments are in order. First, we model damages in each sector  i  by the 
 reduced-form function   δ i    Q N    to capture a broad range of potential harms. In the con-
text of AI, these include the spread of disinformation that harms democracy; mass 
unemployment; and the disruption of production in many sectors from  AI-aided 
cyber attacks.5 Second, as suggested above, the assumption that damages are pro-
portional to   Q N    is related to the transformative nature of this new technology. For 

5 Our functional form assumptions also impose that the rate of substitution between gross consumption and 
damages in utility is constant and equal to one. Jones (2023) points out that this may not hold in the case of existen-
tial risk and explores the implications for optimal use of a  life-threatening new technology.
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example, damages from disinformation from AI will be higher when it can gen-
erate better language. Third, we assume that the arrival rate of the disaster—and 
hence learning about the negative effects of the new technology—is independent 
of how many sectors switch to the new technology. This is for simplicity but is 
not unreasonable since many of the potential misuses of a new technology can be 
gradually recognized without widespread adoption.6 Fourth, it can be verified that 
our results remain identical if, instead of a single  economy-wide disaster, there are 
 sector-specific disasters and beliefs about each sector’s disaster follow (1).

II. Socially Optimal Technology Choice

In this section, we set up, solve, and provide comparative statics for the (social) 
planner’s problem.

A. Social Planner’s Problem

Given risk neutrality, the planner’s objective is

(2)  V (0)  =  E μ (0)    [ ∫ 
0
  
∞

  exp (−ρt)  [Y (t)  − D (t) ] 𝑑t] , 

where  Y (t)   and  D (t)   denote output and damages at time  t  and the expectation   E μ (0)     is 
with respect to the prior belief  μ (0)   over the disaster’s arrival time  T . To ensure that 
the objective is  well defined, we assume that

(3)  ρ >  g N  , 

which rules out the case in which the new technology grows so quickly that dis-
counted utility becomes infinite.

It is more convenient to work with the recursive formulation of (2), which has 
the following state variables: the posterior belief of disaster,  μ ; the  time-varying 
qualities of the old and new technologies,  Q ; and, after the disaster, the set of 
sectors that were already using the new technology and for which this use is irre-
versible. We track these sectors using the vector   x –  =   (  x –  i  )  i∈ [0,1]    , where    x –  i   = 1  if 
sector  i  uses technology  N  irreversibly and    x –  i   = 0  otherwise. Let  V (μ, Q)   denote 
 predisaster social welfare, and let  W ( x – , Q)   denote  postdisaster welfare. Then the 
 Hamilton-Jacobi-Bellman (HJB) equations for the planner are

(4)  ρV (μ, Q)  =   max  
 x i  ∈ {0,1} 

   {Y (x, Q)  + μλ [E [W ( x – , Q)  |  x]  − V (μ, Q) ] }  +  V ̇   (μ, Q) , 

(5)  ρW ( x – , Q)  =   max  
 x i  ∈ {  x –  i  ,1} 

   {Y (x, Q)  − D (x, Q) }  +  W ˙   ( x – , Q) . 

6 Alternative assumptions are discussed in Section V.
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Equation (5) imposes that   x i    cannot be less than    x –  i    because    x –  i   = 1  implies that 
sector  i ’s use of the new technology is irreversible.  V  then depends on the condi-
tional expectation of welfare after a disaster given the current technology choices  x , 
denoted by  E [W ( x – , Q)  |  x]  .7 In (4), we also use the fact that the arrival rate of the 
disaster, given the posterior  μ , is  μ  λ .

To characterize the planner’s technology choices, suppose first that the disaster 
has occurred. The planner’s problem in (5) is linear, so the solution is

   x i   =  { 1  if   x –  i   = 1 or  ( α i   −  δ i  )   Q N   >  Q O  ,     
0
  

else.
    

This expression assumes, without loss of generality, that the planner sticks with the 
old technology if indifferent. It also imposes the constraint that   x i   = 1  when    x –  i   = 1  . 
Even when unconstrained, it may be optimal to set   x i   = 1  if the output produced by 
technology  N  exceeds its damages plus the output that can be produced by technol-
ogy  O . We first assume that damages are sufficiently large that, whenever possible, 
the planner chooses technology  O  after a disaster:

(6)   α i   ≤  δ i  . 

This enables us to focus on the most interesting case, where damages exceed the 
benefits of the new technology. We return to the general case in Section IIC.

Integrating the HJB equation (5) and taking expectations with respect to   x –  , we 
have

  E [W ( x – , Q)  |  x]  =  ∫ 
0
  
1
   [ (1 −  x i    η i  )    1 _ ρ −  g O      Q O   +  x i    η i     

 α i   −  δ i   _ ρ −  g N      Q N  ] 𝑑i. 

Before the disaster, it is optimal from (4) to use technology  N  in sector  i  if and 
only if

(7)   α i    Q N   −  Q O   >  μλη i   [  1 _ ρ −  g O      Q O   −    α i   −  δ i   _ ρ −  g N      Q N  ] . 

Intuitively, the  left-hand side is the flow gain from using technology  N  in sector  
i  , while the  right-hand side is the expected loss due to the disaster, including both 
the discounted value of lost output and the irreversible damages. These losses are 
multiplied by the posterior arrival rate of the disaster  μ  λ  and the probability of irre-
versibility   η i   . Since  μ  is decreasing and   Q N  / Q O    is increasing, for any initial state  
  (μ (0) , Q (0) )  , there exists a time   t i   < ∞  such that technology  O  is used in sector  i 
before   t i    and technology  N  is used thereafter.

7 To determine this conditional expectation, we use  Pr (  x –  i   = 1  |    x i   = 1)  =  η i    and  Pr (  x –  i   = 1  |    x i   = 0)  = 0 .
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B. Socially Optimal Technology Adoption

To determine how (socially) optimal use of technology  N  changes over time, 
denote the fraction of sectors that use technology  N , or total adoption, by

  X (μ, q)  =  ∫ 
0
  
1
   x i   (μ, q) 𝑑i. 

Here,  q = log ( Q N  / Q O  )   is the quality gap between the technologies and  
  x i   (μ, q)  = 1  if and only if it is optimal to use technology  N  in sector  i  in state   
(μ, q)  . For simplicity, we assume that   α i    and   η i    are constant across sectors and 
equal to  α  and  η  (the general case is studied in online Appendix B). This implies 
that there exists a damage threshold  L (μ, q)   such that it is optimal to adopt the new 
technology in sector  i  if and only if   δ i   < L (μ, q)  . Letting  F  denote the cumulative 
distribution function of the uniform distribution over   [ δ _ ,  

_
 δ  ]  , total adoption is then 

just the fraction of sectors below the damage threshold:

  X (μ, q)  = F (L (μ, q) ) . 

The following proposition is immediate from (7), and we omit its proof.

PROPOSITION 1: Suppose that (6) holds and   α i    and   η i    are constant across sectors. 
It is socially optimal to use technology  N  in sector  i  if and only if   δ i   < L (μ, q)  , where

(8)    
L (μ, q)  − α

 _ ρ −  g N     =   
α − exp (−q) 

  ___________ μλη   −   
exp (−q) 
 _ ρ −  g O    . 

 L(μ, Q)  (and thus  X(μ, q) ) is increasing in  α  and  q ; decreasing in   g O   ,  λ , and  μ ; and 
decreasing in   g N   , provided that  L(μ, q) > α .

Given (6), the condition  L (μ, q)  > α  is satisfied as soon as there is any adoption. 
Proposition 1 then implies that when the new technology enables faster growth, its 
adoption should be slower. This is because of a precautionary motive—even though 
the planner is  risk neutral, she would like to avoid irreversible damages from the 
new technology. The faster the new technology grows, the greater are the potential 
net output losses, strengthening this precautionary motive.

The comparative statics in Proposition 1 are partial because they hold the state   
(μ, q)   fixed. Full comparative statics must account for how parameter changes 
affect the evolution of the state   (μ (t) , q (t) )  . The belief  μ (t)   does not depend on the 
growth rates   g O    and   g N   , but the quality gap  q (t)  = q (0)  +  ( g N   −  g O  ) t  does. The 
damage threshold  L (μ, q)   is increasing in the quality gap, so any change in growth 
rates affects adoption at each  t > 0  through both the direct effects described in 
Proposition 1 and the indirect effects through changes in the quality gap  q (t)  . The 
next proposition characterizes these total effects.
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PROPOSITION 2: Suppose that (6) holds and   α i    and   η i    are constant across sectors.

 (i)  X (μ (t) , q (t) )   is decreasing in   g O   .

 (ii) There exists an earliest time   t –  < ∞  such that  X (μ (t) , q (t) )   is decreasing in   
g N    if  t >  t –  . The time   t –   is decreasing in   g N   .

 (iii) Adoption falls to zero as   g N    approaches  ρ —that is,   lim  g N   ↑  ρ   X (μ (t) , q (t) )  = 0 .

The first part of Proposition 2 establishes that the comparative static for   g O    from 
Proposition 1 generalizes in the presence of the indirect effects through  q (t)  —the 
quality gap  q (t)   is declining in   g O   , reinforcing the direct effect and decreasing adop-
tion. The second part shows that the new technology’s growth rate has more nuanced 
implications: adoption is not always decreasing in   g N   , but it is decreasing after some 
critical time   t –  , and this time itself is a decreasing function of   g N   . This holds because 
the precautionary motive highlighted above must compete with the fact that the 
quality gap  q (t)   is increasing in   g N   , but this indirect effect can dominate only at short 
time horizons.

The third part of the proposition establishes that as   g N    increases toward the dis-
count rate, adoption almost stops. This might appear paradoxical initially but is also 
intuitive. When   g N    is approximately equal to  ρ , the benefits from the new technol-
ogy are very high, leading to nearly infinite discounted utility provided no disaster 
arrives. Delay in adoption thus has little effect on these benefits. However, a disaster 
will have huge negative consequences, and avoiding it now takes precedence.

The next proposition further characterizes the shape of the adoption curve. Since  
F  is uniform,   X ˙   (μ, q)  = f  L ˙   (μ, q)  , where  f  is the constant density of  F . Hence, the 
curvature of technology adoption is

    
 X ¨   (μ, q) 
 _____ 

 X ˙   (μ, q)    =   
 L ¨   (μ, q) 
 _____ 

 L ˙   (μ, q)   . 

We therefore have the following proposition.

PROPOSITION 3: Suppose that (6) holds.

 (i)   L ˙   (μ, q)  > 0  is decreasing in   g O   , and it is decreasing in   g N    if and only if the 
quality gap is sufficiently large—that is,

  α exp (q)  − 1 >   
 (ρ −  g N  )  −  ( g N   −  g O  ) 

  ________________  
1 − μ   (  1 _ λ   +   μη _ ρ −  g O    ) . 

 (ii) There exists a positive constant  G (μ, q)   such that if  α exp (q)  > 1 ,  
  L ¨   (μ, q)   is positive if and only if   g N   −  g O   < G (μ, q)  .  G (μ, q)   is independent 
of   g N    and increases to infinity over time.

The intuition for the first part is the same as for Proposition 2. The damage 
threshold increases as the posterior belief  μ  falls and the quality gap  q  grows. Faster 
growth for technology  O  slows the rate of increase of the quality gap and raises the 
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opportunity cost of using technology  N  after the disaster. Consequently, the damage 
threshold grows less quickly in each state. Faster growth for technology  N  raises 
both the rate of increase in the quality gap and the net output losses from technology  
N  after the disaster. The latter effect dominates when the quality gap is sufficiently 
large because additional improvements in technology  N  relative to  O  have only a 
negligible impact on the planner’s technology choice.8

The second part of the proposition proves that adoption of the new technology 
will eventually have a convex segment where adoption accelerates (because eventu-
ally   g N   −  g O    will be below G(μ, q)). This result holds even though the learning rate  
| μ ˙  |  falls at a greater than exponential rate when  μ <   1 _ 2    (in particular,    d _ 

dt
  | μ ˙  | = −λ| 

μ ˙  |(1 − 2μ) ). This is because expected damages from technology  N  in sector  i  are 
proportional to the posterior  μ , and as  μ  declines, larger increases in the damage 
threshold  L(μ, q)  are needed to balance the expected damages and benefits in the 
“marginal” sector.9

To illustrate these results, we depict the time path of adoption in a couple of 
parameterized cases in Figure 1. We set   g O   = 2 percent  in line with trend GDP 
growth in developed economies and  ρ = 0.04  to produce a  risk-free interest rate 
of 4 percent. We choose two values for   g N    based on Chui et al. (2023), who fore-
cast an increase in the growth rate of 0. 6–3.6 percent in the United States between 
2023 and 2040 from AI and other automation technologies. We take the lower end 
of this range,   g N   −  g O   = 0.6 percent , and a higher but still conservative estimate 

8 The latter effect also dominates regardless of the quality gap whenever  L (μ, q)  > 0  and   g N   −  g O   ≥ ρ −  g N   .
9 In online Appendix B, we verify this intuition by showing that learning dynamics favor concave adoption when 

sectors are heterogeneous according to   α i    instead of   δ i   .
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Figure 1. Socially Optimal Adoption Curves

Notes: Adoption curves  X (t)  ≡ X (μ (t) , q (t) )   for different values of   g N   . The remaining parameter values are  
ρ = 0.04 ,  λ = 0.05 ,  η = 0.5 ,  α = 1 ,   g O   = 0.02 ,   δ _  = 1 , and   δ 

–
  = 5 . The initial state is  μ (0)  = 0.2  and  

 q (0)  = 0 .
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from the middle of the range,   g N   −  g O   = 1.8 percent  (while still satisfying (3)). We 
take the two technologies to have the same quality in year  t = 0 , thus  q (0)  = 0  . 
We suppose that damages range from one to five times gross sectoral output  
(  δ _  = 1 ,   

_
 δ   = 5 ), and we set  η = 0.5  so that half of all sectors using the new tech-

nology cannot switch back after a disaster. We set the expected arrival time of a 
disaster (if one exists) to be 20 years, which gives  λ = 0.05 . Finally, a recent survey 
of AI experts reports a median estimate of existential risk of about 10 percent,10 and 
since we are interested in  nonexistential misuses of AI as well, we choose the initial 
disaster probability to be twice as large,  μ (0)  = 20 percent . Figure 1 shows that 
optimal adoption is slow, taking about 40 years until full adoption when   g N   = 2.6 
percent  and almost 60 years when   g N   = 3.8 percent .

C. Optimal Adoption with Small Damages

We have so far imposed (6), ensuring that the  postdisaster damages from the new 
technology are large and exceed its gross output within each sector. This is a natural 
benchmark since our analysis is motivated by significant potential harms from AI. 
We now relax this assumption and allow a sector’s damages to be small relative to 
its output under the new technology (  δ i   < α ).

In online Appendix C, we show that socially optimal adoption is again char-
acterized by a damage threshold  L (μ, q)  , and we prove the following analogue to 
Proposition 2 for small damages.

PROPOSITION 4: Suppose that   α i    and   η i    are constant across sectors. For all  t  with  
 L (μ (t) , q (t) )  < α :

 (i)  X (μ (t) , q (t) )   is decreasing in   g O   .

 (ii)  X (μ (t) , q (t) )   is increasing in   g N   .

 (iii) If  q (0)   is sufficiently low and  X (μ (t) , q (t) )  < F (α)  , adoption is bounded 
below  F (α)   as   g N    approaches  ρ —that is,   lim  g N   ↑  ρ   X (μ (t) , q (t) )  < F (α)  .

Adoption among sectors with small damages is still decreasing in   g O   , but in con-
trast to the case with large damages, it is increasing in   g N   . Gradual adoption remains 
optimal even when   g N    increases toward the discount rate  ρ . With small damages, 
using technology  N  is always optimal in the long run. Nevertheless, gradual adop-
tion is optimal to learn about the probability of a disaster (before one occurs) and 
to delay the adoption of technology  N  in case of a disaster until the quality gap 
becomes sufficiently large. This strategy thus avoids temporary costs of irreversibil-
ity. Further analysis of this case is presented in online Appendix C.

Finally, we note that if damages are uncertain, any chance of large damages leads 
to longer optimal delay, even if expected damages are small, in order to avoid the 
possibility that damages turn out to be large and adoption is irreversible.

10 https://aiimpacts.org/2022-expert-survey-on-progress-in-ai

https://aiimpacts.org/2022-expert-survey-on-progress-in-ai
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In summary, the optimal adoption of a new, transformative technology should be 
gradual, particularly when its superior capabilities also make its potential damages 
greater and there is learning about the likelihood of misuse (a “disaster”).

III. Equilibrium Technology Choice

We now characterize equilibrium technology adoption when private firms do not 
fully internalize social damages.

A. The Firm’s Problem

Suppose now that in each sector, the choice of technology is made by a private 
(representative) firm that seeks to maximize expected discounted profits. To sim-
plify, we assume that the firm in sector  i  appropriates all output of its intermediate 
as profits but only internalizes private damages   γ i   ≤  δ i   . This textbook externality 
leads to excessively fast adoption of the new technology before the disaster, and 
our main results below describe how the equilibrium and socially optimal adoption 
curves differ.

Firm  i ’s profit maximization problem can be formulated recursively in the same 
way as the planner’s problem in the previous section. The state variables before the 
disaster are again  μ  and  Q , and after the disaster they are    x –  i    and  Q . Let   Π i   (μ, Q)   
denote the firm’s  predisaster value,   Φ i   (  x –  i  , Q)   its  postdisaster value, and   Y i   ( x i  , Q)   its 
(gross) output. The HJB equations for the firm are

(9)  ρ  Π i   (μ, Q)  =   max  
 x i  ∈ {0,1} 

   { Y i   ( x i  , Q)  + μλ [E [ Φ i   (  x –  i  , Q)   |    x i  ]  −  Π i   (μ, Q) ] }  

 +   Π ˙   i   (μ, Q) , 

(10)  ρ  Φ i   (  x –  i  , Q)  =   max  
 x i  ∈ {  x –  i  ,1} 

   { Y i   ( x i  , Q)  −  x i    γ i    Q N  }  +   Φ ˙   i   (  x –  i  , Q) . 

These value functions differ from the planner’s (4) and (5) because the firm internal-
izes only a fraction   γ i  / δ i    of the flow damages from technology  N .

We now impose a stronger version of (6): private damages are sufficiently large 
that firm  i  will always choose technology  O  after the disaster if possible:11

(11)   α i   ≤  γ i  . 

Similar to the planner’s solution, it is privately optimal for firm  i  to use technology  
N  if and only if

   α i    Q N   −  Q O   >  μλη i   [  
1 _ ρ −  g O      Q O   −    α i   −  γ i   _ ρ −  g N      Q N  ] . 

11 Without this assumption, an additional inefficiency would arise in equilibrium as firms would use the new 
technology in some (reversible) sectors even after a disaster.
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The only difference between this condition and the planner’s optimality condition 
(7) is that private damages   γ i    appear instead of social damages   δ i    on the  right-hand 
side. Firm  i  internalizes fewer damages from technology  N  and thus begins using it 
earlier.

B. Equilibrium Technology Adoption

We denote total equilibrium adoption by

   X ̃   (μ, q)  =  ∫ 
0
  
1
    x ̃   i   (μ, q) 𝑑i, 

where    x ̃   i   (μ, q)  = 1  if and only if firm  i  uses technology  N  in state   (μ, q)  . Again 
assuming that   α i    and   η i    are constant across sectors, it is immediate that firm  i  will 
adopt the new technology if and only if private damages are lower than the damage 
threshold,   γ i   < L (μ, q)  . Equilibrium adoption is then

   X ̃   (μ, q)  =  F γ   (L (μ, q) ) , 

where   F γ    is the cumulative distribution function of   γ i   .
This characterization implies that all comparative statics results from Section IIB 

apply to equilibrium adoption. The results in Propositions 1 and 3 concern only the 
damage threshold  L (μ, q)   and hold exactly as stated, while Proposition 2 applies 
after replacing  X (μ, q)   with   X ̃   (μ, q)  .

PROPOSITION 5: Suppose that (11) holds and   α i    and   η i    are constant across sectors.

 (i)   X ̃   (μ (t) , q (t) )   is decreasing in   g O   .

 (ii) There exists an earliest time   t ̃   < ∞  such that   X ̃   (μ (t) , q (t) )   is decreasing in   
g N    if  t >  t ̃   . The time   t ̃    is decreasing in   g N   .

 (iii) Adoption falls to zero as   g N    increases to  ρ :   lim  g N   ↑  ρ    X ̃   (μ (t) , q (t) )  = 0 .

In the remainder of this section, we characterize how the optimal and equilibrium 
adoption curves differ. We first observe that similar adoption curves do not imply 
that the equilibrium is optimal because the order in which sectors adopt the new 
technology matters. For example, private and social damages may be negatively 
affiliated, meaning that high social damage sectors have low private damages. In this 
case, the order in which the new technology spreads in equilibrium is exactly the 
opposite of the optimal order.

Even when the equilibrium and optimal orders of adoption coincide, the equilib-
rium can be inefficient. To see this, suppose that social and private damages are pos-
itively affiliated, so that there exists a  nonnegative and (strictly) increasing function  
κ  with   γ i   = κ ( δ i  )  ≤  δ i   . We can then write equilibrium adoption as

   X ̃   (μ, q)  = F ( κ   −1  (L (μ, q) ) ) . 
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This equation implies that the equilibrium adoption curve   X ̃   (μ (t) , q (t) )   is a dis-
torted version of the optimal adoption curve, with an equilibrium damage threshold  
  L ̃   (μ, q)  =  κ   −1  (L (μ, q) )  . In this case, knowing how the equilibrium and social 
damage thresholds differ is sufficient to fully characterize equilibrium inefficien-
cies. The next proposition determines how the level, rate of change, and  curvature 
of the equilibrium damage threshold   L ̃   (μ, q)   differ from its social counterpart  
 L (μ, q)  .

PROPOSITION 6: Suppose that (11) holds and   α i    and   η i    are constant across sectors.

 (i) The equilibrium damage threshold is always greater than the social damage 
threshold:   L ̃   (μ, q)  ≥ L (μ, q)  .

 (ii) The equilibrium damage threshold increases more quickly than the social 
damage threshold when   κ ′   ( L ̃   (μ, q) )  < 1 :

    L ̃   ˙   (μ, q)  =   
 L ˙   (μ, q) 
 ________ 

 κ ′   ( L ̃   (μ, q) ) 
  . 

 (iii) The equilibrium damage threshold is more convex than the social damage 
threshold when  κ  is locally concave:

    
  L ̃   ¨   (μ, q) 
 _____ 

  L ̃   ˙   (μ, q) 
   =   

 L ¨   (μ, q) 
 _____ 

 L ˙   (μ, q)    −   
 κ ″   ( L ̃   (μ, q) )  _ 
 κ ′   ( L ̃   (μ, q) ) 

   L ˙   (μ, q) . 

Figure 2. Comparing Socially Optimal and Equilibrium Adoption Curves

Notes: Socially optimal and equilibrium adoption curves,  X (t)   and   X ̃   (t)  ≡  X ̃   (μ (t) , q (t) )  . The calibration is the same 
as in Figure 1. The affiliation function is  κ (δ)  =  δ   1/2  .
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These results follow from the definition of the equilibrium damage threshold  
  L ̃   (μ, q)  . We illustrate them in Figure 2 by depicting the socially optimal and equi-
librium adoption curves for the benchmark parameterizations in Figure 1 and a con-
cave affiliation function  κ . The equilibrium damage threshold is always greater than 
its social counterpart and increases more quickly (for the marginal sectors where  
  κ ′   ( L ̃   (μ, q) )  < 1 ). Consequently, equilibrium adoption is inefficiently rapid and 
accelerates when there are high social damages.

In summary, equilibrium adoption of transformative technologies is determined 
by the same forces that shape optimal adoption. However, because firms are moti-
vated by higher productivity and discouraged only by private damages, equilibrium 
adoption is generally suboptimal: firms do not fully internalize social damages 
from potential disasters, so equilibrium adoption is typically too high and rises too 
quickly, and the order in which sectors adopt the new technology may differ from 
the optimal one.

IV. Regulating Technology Choice

Since equilibrium adoption is potentially inefficient, a natural question is whether 
government regulation can close the gap between equilibrium and optimal adoption 
decisions. Throughout this section, we continue to assume that (11) holds, and we 
simplify the analysis by focusing on ex ante regulations.12

Socially optimal and equilibrium technology choices differ because the planner 
and private firms internalize different damages after the disaster and hence different 
expected damages before the disaster. A straightforward way to correct firms’ incen-
tives is through a use tax that raises firms’ costs of using the new technology before 
the disaster.13 When  sector-specific taxes are feasible, the tax that implements the 
optimal technology choice for sector  i  is equal to the difference between expected 
discounted social and private damages:

(12)   τ i   (μ,  Q N  )  =  μλη i     
 δ i   −  γ i   _ ρ −  g N      Q N  . 

The next proposition notes several properties of these optimal taxes.

PROPOSITION 7: The optimal use tax   τ i   (μ,  Q N  )   is larger in sectors with a larger 
probability of irreversibility   η i    and a larger difference between social and private 
damages   δ i   −  γ i   . It is  log-concave in time and limits to zero as  t → ∞  if and only 
if  λ >  g N   .

The  cross-sector comparative statics follow immediately from (12). Differentiating 
(12) with respect to time yields

    
  τ ˙   i   (μ,  Q N  ) 
 _______ 

 τ i   (μ,  Q N  )    =    μ ˙   __ μ   +     Q ˙   N   ___  Q N     = −λ (1 − μ)  +  g N  . 

12 We ignore ex post (Pigouvian) taxes because their analysis is essentially identical to our characterization of 
use taxes and also because they may not be credible as they do not affect technology choice after the disaster—the 
private sector already stops using the new technology whenever possible.

13 Naturally, adoption taxes that are paid when new technologies are first introduced are equivalent.



373ACEMOGLU AND LENSMAN: REGULATING TRANSFORMATIVE TECHNOLOGIESVOL. 6 NO. 3

Since  μ  declines before the disaster,   τ i   (μ (t) ,  Q N   (t) )   is  log-concave. The difference 
between social and private damages from a disaster is increasing in   Q N   , pushing 
taxes higher, while growing optimism about the absence of a disaster pushes taxes 
lower. The tax is eventually decreasing to zero if and only if learning about the 
disaster risk is sufficiently fast,  λ >  g N   .

 Sector-specific taxes require detailed information about damages and may gen-
erally be difficult to implement. Even in the benchmark case in which   α i    and   η i    
are constant across sectors, the next proposition shows that a  sector-independent 
tax scheme cannot correct inefficient equilibrium adoption unless social and private 
damages are positively affiliated.

PROPOSITION 8: Suppose that   α i    and   η i    are constant across sectors. Given any 
 sector-independent use tax  τ(μ, Q) , firm  i  begins using technology  N  earlier than 
firm  j  if and only if   γ i   ≤  γ j   . Socially optimal technology choices can be imple-
mented for any initial state  (μ(0), Q(0))  if and only if social and private damages 
are positively affiliated. In this case, the following tax is optimal:

(13)  τ (μ, Q)  = μλη   
L (μ, q)  − κ (L (μ, q) ) 

  _______________  ρ −  g N      Q N  . 

This proposition clarifies that a  sector-independent tax can differentially delay 
adoption for sectors with different private damages   γ i   , but it cannot alter the order 
of adoption. When private and social damages are positively affiliated, the socially 
optimal and equilibrium orders of adoption coincide, so a  sector-independent tax 
can fully correct equilibrium inefficiencies.

When the optimal and equilibrium orders of adoption differ, a different policy 
that we refer to as a regulatory sandbox may be more effective. Under this policy, 
sectors with social damages below a threshold   δ ˆ    (“inside the sandbox”) can choose 
their technology freely, while sectors above the threshold are restricted from using 
the new technology until time   T ˆ   . This policy allows the planner to ensure that sec-
tors with high social damages adopt only after the new technology is established to 
be relatively safe. The next proposition demonstrates that the sandbox policy can 
improve upon the  laissez-faire equilibrium.

PROPOSITION 9: Suppose that   α i    and   η i    are constant and   γ i   <  δ i    across sectors. 
Then there exists a sandbox policy   ( δ ˆ  ,  T ˆ  )   that strictly improves upon the  laissez-faire 
equilibrium.

In online Appendix D, we provide additional details about optimal regulatory 
sandboxes and compare them to  sector-independent taxes. In general, each of these 
policies can improve upon the  laissez-faire equilibrium, and combining both is better. 
A  sector-independent tax can differentially delay adoption for sectors with varying 
private damages   γ i   , but it cannot alter the order of adoption. A regulatory sandbox 
can alter the order by delaying adoption for sectors with high social damages.

To implement  welfare-improving use taxes or regulatory sandboxes, regulators 
must have some knowledge about the potential social damages from the new tech-
nology across different sectors. Although there is still substantial uncertainty about 
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these damages from AI, assuming some knowledge is reasonable and consistent 
with current approaches to regulation. For example, the EU AI Act proposal outlines 
a framework in which an AI system is subject to different regulations depending 
on whether its intended use is considered “high risk” (e.g., the operation of critical 
infrastructure, employment, and worker management processes, or law enforcement; 
see European Commission 2021). The results in this section provide a foundation 
for this regulatory approach and also suggest that these policies should be updated 
as AI technologies become more capable and as society learns more about the risks.

V. Concluding Remarks

Advances in generative AI technologies, such as large language models, have 
intensified both hopes of more rapid economic growth and concerns about their 
potential negative consequences. Despite a robust public discussion on AI, there 
are currently no economic models of the regulation of transformative technologies. 
This paper has taken a first step in building such a model to provide novel insights 
for this debate.

We consider the adoption decision of a new, transformative technology that can 
increase productivity growth across all sectors of the economy but also raises risks 
of misuse, which we model as the stochastic arrival of a “disaster.” If a disaster 
occurs, some of the sectors using the new technology may be unable to switch back 
to the old, safe technology. Whether a disaster will occur is unknown, and society 
gradually learns about it over time. Consequently, adoption should be gradual and 
typically follow a convex path, initially growing slowly before accelerating later. 
Most surprisingly, a faster growth rate of the new technology should lead to slower 
adoption when potential damages are large. Although the planner is  risk neutral, she 
has a precautionary motive as irreversible damages imply that it is better to wait 
and learn about the likelihood of a disaster. These irreversible damages are greater 
when the new technology has a higher growth rate, strengthening the precautionary 
motive. Finally, if private firms internalize only part of the social damages from 
transformative technologies, equilibrium adoption is too fast and necessitates regu-
latory policies.

There are many interesting areas left for future work. First, in contrast to our 
baseline assumptions, early adoption may increase risks or may facilitate either gen-
eral learning about potential misuses of the new technology or  sector-specific learn-
ing about its “safe use.” These considerations may motivate “experimentation” by 
adopting the technology in a few sectors or trying different uses in some areas, 
which is an important topic for future work.

Second, many of the misuses of new AI technologies depend on market structure 
and other aspects of regulation (e.g., concerning disinformation, discrimination, or 
privacy), and it would be interesting to explore how these affect optimal and equi-
librium adoption.

Third, we simplified the analysis by assuming risk neutrality. Jones (2023) 
demonstrates that the extent of risk aversion and the precise form of damages have 
a  first-order effect on the  trade-off between higher growth and the likelihood of a 
disaster, and these can be incorporated in future analyses of learning about misuses 
of new transformative technologies.
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Fourth, we abstracted from choices about how new technologies may be used. If 
regulations or other factors can prevent misuse of technology, then faster adoption 
can become optimal.

Finally, we showed that the optimal path of adoption depends on a few parame-
ters, but there is currently a huge amount of uncertainty about their values. Careful 
empirical assessment of the costs and benefits of new, transformative technologies 
like generative AI is an obvious area for future research.
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